File size: 10,980 Bytes
2084d86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
Feature extractor class for WavLM
"""

from typing import List, Optional, Union

import numpy as np

from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.utils import PaddingStrategy, TensorType, logging

logger = logging.get_logger(__name__)


class Wav2LMSpkRegFeatureExtractor(SequenceFeatureExtractor):
    r"""
    Constructs a WavLM feature extractor.

    This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
    most of the main methods. Users should refer to this superclass for more information regarding those methods.

    Args:
        feature_size (`int`, *optional*, defaults to 1):
            The feature dimension of the extracted features.
        sampling_rate (`int`, *optional*, defaults to 16000):
            The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
        padding_value (`float`, *optional*, defaults to 0.0):
            The value that is used to fill the padding values.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly
            improve the performance for some models, *e.g.*,
            [wav2vec2-lv60](https://huggingface.co/models?search=lv60).
        return_attention_mask (`bool`, *optional*, defaults to `False`):
            Whether or not [`~Wav2Vec2FeatureExtractor.__call__`] should return `attention_mask`.

            <Tip>

            Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
            [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
            `attention_mask`. For such models, `input_values` should simply be padded with 0 and no `attention_mask`
            should be passed.

            For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
            [wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should be
            passed for batched inference.

            </Tip>"""

    model_input_names = ["input_values", "attention_mask"]

    def __init__(
        self,
        feature_size=1,
        sampling_rate=16000,
        padding_value=0.0,
        return_attention_mask=False,
        do_normalize=True,
        **kwargs,
    ):
        super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
        self.return_attention_mask = return_attention_mask
        self.do_normalize = do_normalize

    @staticmethod
    def zero_mean_unit_var_norm(
        input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0
    ) -> List[np.ndarray]:
        """
        Every array in the list is normalized to have zero mean and unit variance
        """
        if attention_mask is not None:
            attention_mask = np.array(attention_mask, np.int32)
            normed_input_values = []

            for vector, length in zip(input_values, attention_mask.sum(-1)):
                normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7)
                if length < normed_slice.shape[0]:
                    normed_slice[length:] = padding_value

                normed_input_values.append(normed_slice)
        else:
            normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values]

        return normed_input_values

    def __call__(
        self,
        raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
        padding: Union[bool, str, PaddingStrategy] = False,
        max_length: Optional[int] = None,
        truncation: bool = False,
        pad_to_multiple_of: Optional[int] = None,
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        sampling_rate: Optional[int] = None,
        **kwargs,
    ) -> BatchFeature:
        """
        Main method to featurize and prepare for the model one or several sequence(s).

        Args:
            raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
                The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
                values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
                stereo, i.e. single float per timestep.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`):
                Activates truncation to cut input sequences longer than *max_length* to *max_length*.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
            return_attention_mask (`bool`, *optional*):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific feature_extractor's default.

                [What are attention masks?](../glossary#attention-mask)

                <Tip>

                Wav2Vec2 models that have set `config.feat_extract_norm == "group"`, such as
                [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), have **not** been trained using
                `attention_mask`. For such models, `input_values` should simply be padded with 0 and no
                `attention_mask` should be passed.

                For Wav2Vec2 models that have set `config.feat_extract_norm == "layer"`, such as
                [wav2vec2-lv60](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self), `attention_mask` should
                be passed for batched inference.

                </Tip>

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            sampling_rate (`int`, *optional*):
                The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
                `sampling_rate` at the forward call to prevent silent errors.
            padding_value (`float`, *optional*, defaults to 0.0):
        """

        if sampling_rate is not None:
            if sampling_rate != self.sampling_rate:
                raise ValueError(
                    f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
                    f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
                    f" {self.sampling_rate} and not {sampling_rate}."
                )
        else:
            logger.warning(
                "It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
                "Failing to do so can result in silent errors that might be hard to debug."
            )

        is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
        if is_batched_numpy and len(raw_speech.shape) > 2:
            raise ValueError(f"Only mono-channel audio is supported for input to {self}")
        is_batched = is_batched_numpy or (
            isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
        )

        # always return batch
        if not is_batched:
            raw_speech = [raw_speech]

        # convert into correct format for padding
        encoded_inputs = BatchFeature({"input_values": raw_speech})

        padded_inputs = self.pad(
            encoded_inputs,
            padding=padding,
            max_length=max_length,
            truncation=truncation,
            pad_to_multiple_of=pad_to_multiple_of,
            return_attention_mask=return_attention_mask,
        )

        # convert input values to correct format
        input_values = padded_inputs["input_values"]
        if not isinstance(input_values[0], np.ndarray):
            padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values]
        elif (
            not isinstance(input_values, np.ndarray)
            and isinstance(input_values[0], np.ndarray)
            and input_values[0].dtype is np.dtype(np.float64)
        ):
            padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values]
        elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64):
            padded_inputs["input_values"] = input_values.astype(np.float32)

        # convert attention_mask to correct format
        attention_mask = padded_inputs.get("attention_mask")
        if attention_mask is not None:
            padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]

        # zero-mean and unit-variance normalization
        if self.do_normalize:
            attention_mask = (
                attention_mask
                if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD
                else None
            )
            padded_inputs["input_values"] = self.zero_mean_unit_var_norm(
                padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value
            )

        if return_tensors is not None:
            padded_inputs = padded_inputs.convert_to_tensors(return_tensors)

        return padded_inputs