File size: 5,617 Bytes
5fa360b d39d4b8 5fa360b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# coding=utf-8
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Audio Spectogram Transformer (AST) model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class ASTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ASTModel`]. It is used to instantiate an AST
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the AST
[MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
frequency_stride (`int`, *optional*, defaults to 10):
Frequency stride to use when patchifying the spectrograms.
time_stride (`int`, *optional*, defaults to 10):
Temporal stride to use when patchifying the spectrograms.
max_length (`int`, *optional*, defaults to 1024):
Temporal dimension of the spectrograms.
num_mel_bins (`int`, *optional*, defaults to 128):
Frequency dimension of the spectrograms (number of Mel-frequency bins).
Example:
```python
>>> from transformers import ASTConfig, ASTModel
>>> # Initializing a AST MIT/ast-finetuned-audioset-10-10-0.4593 style configuration
>>> configuration = ASTConfig()
>>> # Initializing a model (with random weights) from the MIT/ast-finetuned-audioset-10-10-0.4593 style configuration
>>> model = ASTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "audio-spectrogram-transformer"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-12,
patch_size=16,
frequency_patch_size=None,
time_patch_size=None,
qkv_bias=True,
frequency_stride=10,
time_stride=10,
max_length=1024,
num_mel_bins=128,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.patch_size = patch_size
self.frequency_patch_size = frequency_patch_size
self.time_patch_size = time_patch_size
self.qkv_bias = qkv_bias
self.frequency_stride = frequency_stride
self.time_stride = time_stride
self.max_length = max_length
self.num_mel_bins = num_mel_bins
|