Added model
Browse files- .gitattributes +1 -0
- Lunar Lander RL model.zip +3 -0
- Lunar Lander RL model/_stable_baselines3_version +1 -0
- Lunar Lander RL model/data +94 -0
- Lunar Lander RL model/policy.optimizer.pth +3 -0
- Lunar Lander RL model/policy.pth +3 -0
- Lunar Lander RL model/pytorch_variables.pth +3 -0
- Lunar Lander RL model/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
Lunar Lander RL model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdfb3cd7f4325b13375182b3a51442fe32b7cded23fb950e5822804f21c46e4a
|
3 |
+
size 144066
|
Lunar Lander RL model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
Lunar Lander RL model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf4a2557a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf4a255830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf4a2558c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf4a255950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcf4a2559e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcf4a255a70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf4a255b00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcf4a255b90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf4a255c20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf4a255cb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf4a255d40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcf4a2b0090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1212416,
|
46 |
+
"_total_timesteps": 1200000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651846277.6723228,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2UTvbI4y8Bu+gPUOzVb1iLX69jzCqvgAAgD8AAIA/zYyXvKRtW7vYvYC7+sV2PB2OiTybllW9AACAPwAAgD/Nvb68rrGJusr04rK/7EYxqlGyOe0bhjMAAIA/AACAPwC+TzxDgH28KE3jO7IHqLtw8ts9dHCHPAAAgD8AAIA/WrrLPZ8F3rsvPwI+kYFpvpa2TzxXtJy/AACAPwAAgD9gJyG+lhCKP8qiGL/DiRa/vtPtvYqQU74AAAAAAAAAAOZDeL2vEMc+G3mEPWFDj741QN07xNxJPQAAAAAAAAAApl4fvsDt1D6nIYE+vqSjvgKO1zzYp+k9AAAAAAAAAADNWbS8Z4ArPhZcfT2uOY++Pdv3u6hr8LwAAAAAAAAAAFNjkj7wzWM/0MpuvBsu6b61Mr8+1oVQvgAAAAAAAAAAzRqcvUFAAz+au0A9OTexvpOCdTzKqjk9AAAAAAAAAAAmMtE9bX3LPkdMq75QxsO+civQvc0ZVb0AAAAAAAAAAIAyMz3486s/ut/FPo1J177AOxA9xmuFPgAAAAAAAAAAAFIIvCmUaz61E0Q+LvuYvq8Vtj04gvq9AAAAAAAAAACaEuE99SdqPxFUMb4ZHtm+uBVRPc5p7b0AAAAAAAAAABoexb1TTCU/A1FMPQFitr7cy6G93jUGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.010346666666666726,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzqj5Kvn+cECUhpRSlIwBbJRNBAGMAXSUR0CjTOkR8MNMdX2UKGgGaAloD0MIYi6p2i5SckCUhpRSlGgVTSsBaBZHQKNNm7ihnJ11fZQoaAZoCWgPQwj+7bJfN7xxQJSGlFKUaBVNCwFoFkdAo021f5ULlXV9lChoBmgJaA9DCPq4NlSMfW9AlIaUUpRoFUvzaBZHQKNOVa1TisJ1fZQoaAZoCWgPQwhf0hitI8xwQJSGlFKUaBVNEwFoFkdAo0+FY6nzhHV9lChoBmgJaA9DCHGTUWWYq3BAlIaUUpRoFUv6aBZHQKNPkl67dzp1fZQoaAZoCWgPQwiVfsLZ7bdwQJSGlFKUaBVNBAFoFkdAo0+iAavRq3V9lChoBmgJaA9DCG5qoPmcE29AlIaUUpRoFU0OAWgWR0CjT9xl6JIldX2UKGgGaAloD0MIRbqfUxAXckCUhpRSlGgVS/RoFkdAo0/c3++/QHV9lChoBmgJaA9DCAYRqWlXlnJAlIaUUpRoFU0FAWgWR0CjT/NBnjABdX2UKGgGaAloD0MIhT/DmzW8ckCUhpRSlGgVTRsBaBZHQKNQfHmRvFZ1fZQoaAZoCWgPQwgZj1IJj8xwQJSGlFKUaBVNAgFoFkdAo1C8EV32VXV9lChoBmgJaA9DCMXiN4UVvG9AlIaUUpRoFU0QAWgWR0CjUOSVGCqZdX2UKGgGaAloD0MIcXK/Q1FlaUCUhpRSlGgVTVMCaBZHQKNRaAG0NSZ1fZQoaAZoCWgPQwjJAbuaPOlwQJSGlFKUaBVNDgFoFkdAo1GcOuq3mXV9lChoBmgJaA9DCLKDSlxHsXJAlIaUUpRoFU0gAWgWR0CjUfdiUgSwdX2UKGgGaAloD0MIdY9srtooc0CUhpRSlGgVTTEBaBZHQKNSWhf0Eox1fZQoaAZoCWgPQwiXrmAbMd1yQJSGlFKUaBVL5WgWR0CjUoEvsZ5zdX2UKGgGaAloD0MIQGmoUUibcECUhpRSlGgVTRQBaBZHQKNSlYHPeHl1fZQoaAZoCWgPQwimDBzQkmhyQJSGlFKUaBVNMAFoFkdAo1Mlic5Ke3V9lChoBmgJaA9DCCuIga79SnFAlIaUUpRoFUv3aBZHQKNT6BhhH9Z1fZQoaAZoCWgPQwhxHHi1XE5zQJSGlFKUaBVNAQFoFkdAo1Qtv2oNu3V9lChoBmgJaA9DCEAYeO591nBAlIaUUpRoFU0NAWgWR0CjVFb7sOXmdX2UKGgGaAloD0MIdy6M9CLGb0CUhpRSlGgVTQIBaBZHQKNUZb+tKZl1fZQoaAZoCWgPQwiQwB9+PmZwQJSGlFKUaBVL9mgWR0CjVRlGwzLwdX2UKGgGaAloD0MIlX1XBP/UckCUhpRSlGgVTSoBaBZHQKNVJE/B3zN1fZQoaAZoCWgPQwhjJ7wEZwBxQJSGlFKUaBVNGAFoFkdAo1V4EIPbwnV9lChoBmgJaA9DCLa8cr1tuHFAlIaUUpRoFUv0aBZHQKNVwyuZCv51fZQoaAZoCWgPQwgZcJaSZaJwQJSGlFKUaBVNFwFoFkdAo1Xjvy9VWHV9lChoBmgJaA9DCL05XKv93XJAlIaUUpRoFU1OAWgWR0CjVej3mFJydX2UKGgGaAloD0MI2c9iKVJCc0CUhpRSlGgVS/RoFkdAo1X9AHE/B3V9lChoBmgJaA9DCAa9N4YAh3JAlIaUUpRoFUv+aBZHQKNW0xmCiAV1fZQoaAZoCWgPQwivBigN9axwQJSGlFKUaBVNIAFoFkdAo1cEwi7kGXV9lChoBmgJaA9DCChiEcMOcm9AlIaUUpRoFUv7aBZHQKNXA+RoysV1fZQoaAZoCWgPQwiVfOwuENtyQJSGlFKUaBVNCAFoFkdAo1cmsgdOqXV9lChoBmgJaA9DCAxAo3TprVFAlIaUUpRoFUu7aBZHQKNXm0IkZ751fZQoaAZoCWgPQwgz4gLQaNhwQJSGlFKUaBVNAAFoFkdAo1ekQoTfznV9lChoBmgJaA9DCEQzT67p+HJAlIaUUpRoFU0CAWgWR0CjWFurhisodX2UKGgGaAloD0MIem02VuJdbkCUhpRSlGgVS/ZoFkdAo1hpRwZOz3V9lChoBmgJaA9DCCnPvBx2kHBAlIaUUpRoFUvyaBZHQKNmR1L8Jld1fZQoaAZoCWgPQwitM74vbqhyQJSGlFKUaBVNHQFoFkdAo2ZHddmg8XV9lChoBmgJaA9DCDmaIyt/ZXNAlIaUUpRoFUvwaBZHQKNmjcGkep51fZQoaAZoCWgPQwiy2vy/qtVxQJSGlFKUaBVNGAFoFkdAo2bktyxRmHV9lChoBmgJaA9DCLcKYqBrInJAlIaUUpRoFUvzaBZHQKNm+yfthNN1fZQoaAZoCWgPQwjw37w4sZ9xQJSGlFKUaBVL8mgWR0CjZxCB5HEudX2UKGgGaAloD0MI7kJznQb6cECUhpRSlGgVS/loFkdAo2cYvcrRSnV9lChoBmgJaA9DCK0XQznR7XJAlIaUUpRoFU0UAWgWR0CjZ2jd56dEdX2UKGgGaAloD0MIbFuU2SAGVkCUhpRSlGgVS6toFkdAo2eTKifxt3V9lChoBmgJaA9DCM+HZwmyLHBAlIaUUpRoFU0CAWgWR0CjaDIUBXCCdX2UKGgGaAloD0MIajNOQ1TUbECUhpRSlGgVS/loFkdAo2g8/wAlwHV9lChoBmgJaA9DCA3eV+WC+HBAlIaUUpRoFUv7aBZHQKNoaBJ7LMd1fZQoaAZoCWgPQwhftwiMNVNwQJSGlFKUaBVL92gWR0CjaMV8CxNZdX2UKGgGaAloD0MIgeuKGeEeckCUhpRSlGgVTR4BaBZHQKNo0k+otMB1fZQoaAZoCWgPQwiZDTLJiHNxQJSGlFKUaBVL/2gWR0CjaZ0yYXwcdX2UKGgGaAloD0MIs3kcBvNxckCUhpRSlGgVTSMBaBZHQKNqXcmjTKF1fZQoaAZoCWgPQwgTYcPT65dwQJSGlFKUaBVL72gWR0Cjapl8gIQfdX2UKGgGaAloD0MICp5CrhTccECUhpRSlGgVTRQBaBZHQKNrAgPEsJ91fZQoaAZoCWgPQwgPR1fp7oJuQJSGlFKUaBVNGwFoFkdAo2slY4hllXV9lChoBmgJaA9DCGYwRiQKmm5AlIaUUpRoFU0BAWgWR0Cja26pxWDIdX2UKGgGaAloD0MIjpHsEerucECUhpRSlGgVTQABaBZHQKNrip6yB091fZQoaAZoCWgPQwjWpxyTBbJwQJSGlFKUaBVNDwFoFkdAo2uZRyfcvnV9lChoBmgJaA9DCN18I7rn3G9AlIaUUpRoFU0VAWgWR0Cja95r56+ndX2UKGgGaAloD0MIJlEv+DSvcUCUhpRSlGgVTQ4BaBZHQKNsIBFuvU11fZQoaAZoCWgPQwhgAyLElVZxQJSGlFKUaBVNGQFoFkdAo2yDJ2dNFnV9lChoBmgJaA9DCJT2Bl8YG25AlIaUUpRoFU0AAWgWR0CjbLyeqaPTdX2UKGgGaAloD0MIRfC/lWzfcECUhpRSlGgVTQ4BaBZHQKNs/sqJ/G51fZQoaAZoCWgPQwgs81ZdhzZzQJSGlFKUaBVNGQFoFkdAo21a3uuzQnV9lChoBmgJaA9DCLFPAMUIYHNAlIaUUpRoFU0KAWgWR0CjbYCed07sdX2UKGgGaAloD0MIPiMRGgHlcECUhpRSlGgVTRIBaBZHQKNtrTNt65Z1fZQoaAZoCWgPQwhhUnx8wgByQJSGlFKUaBVL+2gWR0CjbhS/j81odX2UKGgGaAloD0MI/kgRGRb4c0CUhpRSlGgVS+poFkdAo26jm4iHI3V9lChoBmgJaA9DCGHB/YCH2m9AlIaUUpRoFU0VAWgWR0CjbzKYqoZRdX2UKGgGaAloD0MI3A2itWI0cUCUhpRSlGgVS/doFkdAo2/cZrHlwXV9lChoBmgJaA9DCL+CNGNRFHFAlIaUUpRoFU0WAWgWR0CjcABWgezVdX2UKGgGaAloD0MI4UIewY1hb0CUhpRSlGgVTQsBaBZHQKNwLhCtzS11fZQoaAZoCWgPQwhW8xyRL95yQJSGlFKUaBVNJwFoFkdAo3AvjwQUYnV9lChoBmgJaA9DCBk8TPtmznFAlIaUUpRoFU0VAWgWR0CjcEE2YOUddX2UKGgGaAloD0MIB+v/HGZxckCUhpRSlGgVTQcBaBZHQKNwcSPluFZ1fZQoaAZoCWgPQwh15bM8jw5xQJSGlFKUaBVL9mgWR0CjcGfUnXumdX2UKGgGaAloD0MIB35Uw/45cUCUhpRSlGgVS+5oFkdAo3DNapxWDHV9lChoBmgJaA9DCLVwWYWNr3FAlIaUUpRoFUv9aBZHQKNw1fKISDh1fZQoaAZoCWgPQwiNfF7xVNFvQJSGlFKUaBVL8mgWR0CjcRQblzU7dX2UKGgGaAloD0MIfEW3XtO1bUCUhpRSlGgVS/RoFkdAo3GUbkwN9nV9lChoBmgJaA9DCA5MbhRZ4m9AlIaUUpRoFU0DAWgWR0Cjcayw4bS7dX2UKGgGaAloD0MI0o+GU2bHckCUhpRSlGgVTQIBaBZHQKNzBGPxQSB1fZQoaAZoCWgPQwjG3LWEvIVyQJSGlFKUaBVNMAFoFkdAo3NAH9m6G3V9lChoBmgJaA9DCHP3OT4aDnFAlIaUUpRoFU0CAWgWR0Cjc5+6qbSadX2UKGgGaAloD0MI/Knx0s0OckCUhpRSlGgVS+ZoFkdAo3O+DjBEa3V9lChoBmgJaA9DCNcWnpfKCnNAlIaUUpRoFUviaBZHQKN0Dyd4FA51fZQoaAZoCWgPQwjY1HlUfD9xQJSGlFKUaBVL9WgWR0CjdFd9lVcVdX2UKGgGaAloD0MIS7A4nHkBckCUhpRSlGgVS/FoFkdAo3SQxi5NGnV9lChoBmgJaA9DCH6P+uuV3m1AlIaUUpRoFU0OAWgWR0CjdKMSsbNsdX2UKGgGaAloD0MIqRYRxWRjcUCUhpRSlGgVTRwBaBZHQKN1DRG+bmV1fZQoaAZoCWgPQwi4W5IDdoVyQJSGlFKUaBVL9WgWR0CjdQ10DEFXdX2UKGgGaAloD0MIAIv8+iHvcECUhpRSlGgVTRABaBZHQKN1ED9Oymh1fZQoaAZoCWgPQwhCX3r7M5ZxQJSGlFKUaBVNsAFoFkdAo3UlrEcbSHV9lChoBmgJaA9DCJqUgm5vx3FAlIaUUpRoFU0FAWgWR0CjdZdpItlJdX2UKGgGaAloD0MIyjLEse70cECUhpRSlGgVTSsBaBZHQKN15l2eQMh1fZQoaAZoCWgPQwhtPNhiNw5yQJSGlFKUaBVNIAFoFkdAo3ahpi7TUnV9lChoBmgJaA9DCNWxSumZIXNAlIaUUpRoFU0yAWgWR0CjdtilzltCdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 420,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
Lunar Lander RL model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa8f642b88ce4782d574044737cbf77da518f9aac61af99c1c33cfdad0a562ab
|
3 |
+
size 84893
|
Lunar Lander RL model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b3e9e36dc34100afcfd29e5149c44eca3eef621a5e1864a4a102c4bb4b51caa
|
3 |
+
size 43201
|
Lunar Lander RL model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Lunar Lander RL model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 264.71 +/- 10.76
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf4a2557a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf4a255830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf4a2558c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf4a255950>", "_build": "<function ActorCriticPolicy._build at 0x7fcf4a2559e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcf4a255a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf4a255b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcf4a255b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf4a255c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf4a255cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf4a255d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcf4a2b0090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651846277.6723228, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2UTvbI4y8Bu+gPUOzVb1iLX69jzCqvgAAgD8AAIA/zYyXvKRtW7vYvYC7+sV2PB2OiTybllW9AACAPwAAgD/Nvb68rrGJusr04rK/7EYxqlGyOe0bhjMAAIA/AACAPwC+TzxDgH28KE3jO7IHqLtw8ts9dHCHPAAAgD8AAIA/WrrLPZ8F3rsvPwI+kYFpvpa2TzxXtJy/AACAPwAAgD9gJyG+lhCKP8qiGL/DiRa/vtPtvYqQU74AAAAAAAAAAOZDeL2vEMc+G3mEPWFDj741QN07xNxJPQAAAAAAAAAApl4fvsDt1D6nIYE+vqSjvgKO1zzYp+k9AAAAAAAAAADNWbS8Z4ArPhZcfT2uOY++Pdv3u6hr8LwAAAAAAAAAAFNjkj7wzWM/0MpuvBsu6b61Mr8+1oVQvgAAAAAAAAAAzRqcvUFAAz+au0A9OTexvpOCdTzKqjk9AAAAAAAAAAAmMtE9bX3LPkdMq75QxsO+civQvc0ZVb0AAAAAAAAAAIAyMz3486s/ut/FPo1J177AOxA9xmuFPgAAAAAAAAAAAFIIvCmUaz61E0Q+LvuYvq8Vtj04gvq9AAAAAAAAAACaEuE99SdqPxFUMb4ZHtm+uBVRPc5p7b0AAAAAAAAAABoexb1TTCU/A1FMPQFitr7cy6G93jUGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzqj5Kvn+cECUhpRSlIwBbJRNBAGMAXSUR0CjTOkR8MNMdX2UKGgGaAloD0MIYi6p2i5SckCUhpRSlGgVTSsBaBZHQKNNm7ihnJ11fZQoaAZoCWgPQwj+7bJfN7xxQJSGlFKUaBVNCwFoFkdAo021f5ULlXV9lChoBmgJaA9DCPq4NlSMfW9AlIaUUpRoFUvzaBZHQKNOVa1TisJ1fZQoaAZoCWgPQwhf0hitI8xwQJSGlFKUaBVNEwFoFkdAo0+FY6nzhHV9lChoBmgJaA9DCHGTUWWYq3BAlIaUUpRoFUv6aBZHQKNPkl67dzp1fZQoaAZoCWgPQwiVfsLZ7bdwQJSGlFKUaBVNBAFoFkdAo0+iAavRq3V9lChoBmgJaA9DCG5qoPmcE29AlIaUUpRoFU0OAWgWR0CjT9xl6JIldX2UKGgGaAloD0MIRbqfUxAXckCUhpRSlGgVS/RoFkdAo0/c3++/QHV9lChoBmgJaA9DCAYRqWlXlnJAlIaUUpRoFU0FAWgWR0CjT/NBnjABdX2UKGgGaAloD0MIhT/DmzW8ckCUhpRSlGgVTRsBaBZHQKNQfHmRvFZ1fZQoaAZoCWgPQwgZj1IJj8xwQJSGlFKUaBVNAgFoFkdAo1C8EV32VXV9lChoBmgJaA9DCMXiN4UVvG9AlIaUUpRoFU0QAWgWR0CjUOSVGCqZdX2UKGgGaAloD0MIcXK/Q1FlaUCUhpRSlGgVTVMCaBZHQKNRaAG0NSZ1fZQoaAZoCWgPQwjJAbuaPOlwQJSGlFKUaBVNDgFoFkdAo1GcOuq3mXV9lChoBmgJaA9DCLKDSlxHsXJAlIaUUpRoFU0gAWgWR0CjUfdiUgSwdX2UKGgGaAloD0MIdY9srtooc0CUhpRSlGgVTTEBaBZHQKNSWhf0Eox1fZQoaAZoCWgPQwiXrmAbMd1yQJSGlFKUaBVL5WgWR0CjUoEvsZ5zdX2UKGgGaAloD0MIQGmoUUibcECUhpRSlGgVTRQBaBZHQKNSlYHPeHl1fZQoaAZoCWgPQwimDBzQkmhyQJSGlFKUaBVNMAFoFkdAo1Mlic5Ke3V9lChoBmgJaA9DCCuIga79SnFAlIaUUpRoFUv3aBZHQKNT6BhhH9Z1fZQoaAZoCWgPQwhxHHi1XE5zQJSGlFKUaBVNAQFoFkdAo1Qtv2oNu3V9lChoBmgJaA9DCEAYeO591nBAlIaUUpRoFU0NAWgWR0CjVFb7sOXmdX2UKGgGaAloD0MIdy6M9CLGb0CUhpRSlGgVTQIBaBZHQKNUZb+tKZl1fZQoaAZoCWgPQwiQwB9+PmZwQJSGlFKUaBVL9mgWR0CjVRlGwzLwdX2UKGgGaAloD0MIlX1XBP/UckCUhpRSlGgVTSoBaBZHQKNVJE/B3zN1fZQoaAZoCWgPQwhjJ7wEZwBxQJSGlFKUaBVNGAFoFkdAo1V4EIPbwnV9lChoBmgJaA9DCLa8cr1tuHFAlIaUUpRoFUv0aBZHQKNVwyuZCv51fZQoaAZoCWgPQwgZcJaSZaJwQJSGlFKUaBVNFwFoFkdAo1Xjvy9VWHV9lChoBmgJaA9DCL05XKv93XJAlIaUUpRoFU1OAWgWR0CjVej3mFJydX2UKGgGaAloD0MI2c9iKVJCc0CUhpRSlGgVS/RoFkdAo1X9AHE/B3V9lChoBmgJaA9DCAa9N4YAh3JAlIaUUpRoFUv+aBZHQKNW0xmCiAV1fZQoaAZoCWgPQwivBigN9axwQJSGlFKUaBVNIAFoFkdAo1cEwi7kGXV9lChoBmgJaA9DCChiEcMOcm9AlIaUUpRoFUv7aBZHQKNXA+RoysV1fZQoaAZoCWgPQwiVfOwuENtyQJSGlFKUaBVNCAFoFkdAo1cmsgdOqXV9lChoBmgJaA9DCAxAo3TprVFAlIaUUpRoFUu7aBZHQKNXm0IkZ751fZQoaAZoCWgPQwgz4gLQaNhwQJSGlFKUaBVNAAFoFkdAo1ekQoTfznV9lChoBmgJaA9DCEQzT67p+HJAlIaUUpRoFU0CAWgWR0CjWFurhisodX2UKGgGaAloD0MIem02VuJdbkCUhpRSlGgVS/ZoFkdAo1hpRwZOz3V9lChoBmgJaA9DCCnPvBx2kHBAlIaUUpRoFUvyaBZHQKNmR1L8Jld1fZQoaAZoCWgPQwitM74vbqhyQJSGlFKUaBVNHQFoFkdAo2ZHddmg8XV9lChoBmgJaA9DCDmaIyt/ZXNAlIaUUpRoFUvwaBZHQKNmjcGkep51fZQoaAZoCWgPQwiy2vy/qtVxQJSGlFKUaBVNGAFoFkdAo2bktyxRmHV9lChoBmgJaA9DCLcKYqBrInJAlIaUUpRoFUvzaBZHQKNm+yfthNN1fZQoaAZoCWgPQwjw37w4sZ9xQJSGlFKUaBVL8mgWR0CjZxCB5HEudX2UKGgGaAloD0MI7kJznQb6cECUhpRSlGgVS/loFkdAo2cYvcrRSnV9lChoBmgJaA9DCK0XQznR7XJAlIaUUpRoFU0UAWgWR0CjZ2jd56dEdX2UKGgGaAloD0MIbFuU2SAGVkCUhpRSlGgVS6toFkdAo2eTKifxt3V9lChoBmgJaA9DCM+HZwmyLHBAlIaUUpRoFU0CAWgWR0CjaDIUBXCCdX2UKGgGaAloD0MIajNOQ1TUbECUhpRSlGgVS/loFkdAo2g8/wAlwHV9lChoBmgJaA9DCA3eV+WC+HBAlIaUUpRoFUv7aBZHQKNoaBJ7LMd1fZQoaAZoCWgPQwhftwiMNVNwQJSGlFKUaBVL92gWR0CjaMV8CxNZdX2UKGgGaAloD0MIgeuKGeEeckCUhpRSlGgVTR4BaBZHQKNo0k+otMB1fZQoaAZoCWgPQwiZDTLJiHNxQJSGlFKUaBVL/2gWR0CjaZ0yYXwcdX2UKGgGaAloD0MIs3kcBvNxckCUhpRSlGgVTSMBaBZHQKNqXcmjTKF1fZQoaAZoCWgPQwgTYcPT65dwQJSGlFKUaBVL72gWR0Cjapl8gIQfdX2UKGgGaAloD0MICp5CrhTccECUhpRSlGgVTRQBaBZHQKNrAgPEsJ91fZQoaAZoCWgPQwgPR1fp7oJuQJSGlFKUaBVNGwFoFkdAo2slY4hllXV9lChoBmgJaA9DCGYwRiQKmm5AlIaUUpRoFU0BAWgWR0Cja26pxWDIdX2UKGgGaAloD0MIjpHsEerucECUhpRSlGgVTQABaBZHQKNrip6yB091fZQoaAZoCWgPQwjWpxyTBbJwQJSGlFKUaBVNDwFoFkdAo2uZRyfcvnV9lChoBmgJaA9DCN18I7rn3G9AlIaUUpRoFU0VAWgWR0Cja95r56+ndX2UKGgGaAloD0MIJlEv+DSvcUCUhpRSlGgVTQ4BaBZHQKNsIBFuvU11fZQoaAZoCWgPQwhgAyLElVZxQJSGlFKUaBVNGQFoFkdAo2yDJ2dNFnV9lChoBmgJaA9DCJT2Bl8YG25AlIaUUpRoFU0AAWgWR0CjbLyeqaPTdX2UKGgGaAloD0MIRfC/lWzfcECUhpRSlGgVTQ4BaBZHQKNs/sqJ/G51fZQoaAZoCWgPQwgs81ZdhzZzQJSGlFKUaBVNGQFoFkdAo21a3uuzQnV9lChoBmgJaA9DCLFPAMUIYHNAlIaUUpRoFU0KAWgWR0CjbYCed07sdX2UKGgGaAloD0MIPiMRGgHlcECUhpRSlGgVTRIBaBZHQKNtrTNt65Z1fZQoaAZoCWgPQwhhUnx8wgByQJSGlFKUaBVL+2gWR0CjbhS/j81odX2UKGgGaAloD0MI/kgRGRb4c0CUhpRSlGgVS+poFkdAo26jm4iHI3V9lChoBmgJaA9DCGHB/YCH2m9AlIaUUpRoFU0VAWgWR0CjbzKYqoZRdX2UKGgGaAloD0MI3A2itWI0cUCUhpRSlGgVS/doFkdAo2/cZrHlwXV9lChoBmgJaA9DCL+CNGNRFHFAlIaUUpRoFU0WAWgWR0CjcABWgezVdX2UKGgGaAloD0MI4UIewY1hb0CUhpRSlGgVTQsBaBZHQKNwLhCtzS11fZQoaAZoCWgPQwhW8xyRL95yQJSGlFKUaBVNJwFoFkdAo3AvjwQUYnV9lChoBmgJaA9DCBk8TPtmznFAlIaUUpRoFU0VAWgWR0CjcEE2YOUddX2UKGgGaAloD0MIB+v/HGZxckCUhpRSlGgVTQcBaBZHQKNwcSPluFZ1fZQoaAZoCWgPQwh15bM8jw5xQJSGlFKUaBVL9mgWR0CjcGfUnXumdX2UKGgGaAloD0MIB35Uw/45cUCUhpRSlGgVS+5oFkdAo3DNapxWDHV9lChoBmgJaA9DCLVwWYWNr3FAlIaUUpRoFUv9aBZHQKNw1fKISDh1fZQoaAZoCWgPQwiNfF7xVNFvQJSGlFKUaBVL8mgWR0CjcRQblzU7dX2UKGgGaAloD0MIfEW3XtO1bUCUhpRSlGgVS/RoFkdAo3GUbkwN9nV9lChoBmgJaA9DCA5MbhRZ4m9AlIaUUpRoFU0DAWgWR0Cjcayw4bS7dX2UKGgGaAloD0MI0o+GU2bHckCUhpRSlGgVTQIBaBZHQKNzBGPxQSB1fZQoaAZoCWgPQwjG3LWEvIVyQJSGlFKUaBVNMAFoFkdAo3NAH9m6G3V9lChoBmgJaA9DCHP3OT4aDnFAlIaUUpRoFU0CAWgWR0Cjc5+6qbSadX2UKGgGaAloD0MI/Knx0s0OckCUhpRSlGgVS+ZoFkdAo3O+DjBEa3V9lChoBmgJaA9DCNcWnpfKCnNAlIaUUpRoFUviaBZHQKN0Dyd4FA51fZQoaAZoCWgPQwjY1HlUfD9xQJSGlFKUaBVL9WgWR0CjdFd9lVcVdX2UKGgGaAloD0MIS7A4nHkBckCUhpRSlGgVS/FoFkdAo3SQxi5NGnV9lChoBmgJaA9DCH6P+uuV3m1AlIaUUpRoFU0OAWgWR0CjdKMSsbNsdX2UKGgGaAloD0MIqRYRxWRjcUCUhpRSlGgVTRwBaBZHQKN1DRG+bmV1fZQoaAZoCWgPQwi4W5IDdoVyQJSGlFKUaBVL9WgWR0CjdQ10DEFXdX2UKGgGaAloD0MIAIv8+iHvcECUhpRSlGgVTRABaBZHQKN1ED9Oymh1fZQoaAZoCWgPQwhCX3r7M5ZxQJSGlFKUaBVNsAFoFkdAo3UlrEcbSHV9lChoBmgJaA9DCJqUgm5vx3FAlIaUUpRoFU0FAWgWR0CjdZdpItlJdX2UKGgGaAloD0MIyjLEse70cECUhpRSlGgVTSsBaBZHQKN15l2eQMh1fZQoaAZoCWgPQwhtPNhiNw5yQJSGlFKUaBVNIAFoFkdAo3ahpi7TUnV9lChoBmgJaA9DCNWxSumZIXNAlIaUUpRoFU0yAWgWR0CjdtilzltCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 420, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bb65b5ea7838cc6a21cab215be3296d278909148b4d0e676923ea0ea6ab760e
|
3 |
+
size 243436
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.70915465065633, "std_reward": 10.756344281103795, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T14:51:54.643015"}
|