comodoro commited on
Commit
c29faa6
·
1 Parent(s): 78a7a50

Added model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
Lunar Lander RL model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdfb3cd7f4325b13375182b3a51442fe32b7cded23fb950e5822804f21c46e4a
3
+ size 144066
Lunar Lander RL model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
Lunar Lander RL model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf4a2557a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf4a255830>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf4a2558c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf4a255950>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcf4a2559e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcf4a255a70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf4a255b00>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcf4a255b90>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf4a255c20>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf4a255cb0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf4a255d40>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcf4a2b0090>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1212416,
46
+ "_total_timesteps": 1200000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651846277.6723228,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2UTvbI4y8Bu+gPUOzVb1iLX69jzCqvgAAgD8AAIA/zYyXvKRtW7vYvYC7+sV2PB2OiTybllW9AACAPwAAgD/Nvb68rrGJusr04rK/7EYxqlGyOe0bhjMAAIA/AACAPwC+TzxDgH28KE3jO7IHqLtw8ts9dHCHPAAAgD8AAIA/WrrLPZ8F3rsvPwI+kYFpvpa2TzxXtJy/AACAPwAAgD9gJyG+lhCKP8qiGL/DiRa/vtPtvYqQU74AAAAAAAAAAOZDeL2vEMc+G3mEPWFDj741QN07xNxJPQAAAAAAAAAApl4fvsDt1D6nIYE+vqSjvgKO1zzYp+k9AAAAAAAAAADNWbS8Z4ArPhZcfT2uOY++Pdv3u6hr8LwAAAAAAAAAAFNjkj7wzWM/0MpuvBsu6b61Mr8+1oVQvgAAAAAAAAAAzRqcvUFAAz+au0A9OTexvpOCdTzKqjk9AAAAAAAAAAAmMtE9bX3LPkdMq75QxsO+civQvc0ZVb0AAAAAAAAAAIAyMz3486s/ut/FPo1J177AOxA9xmuFPgAAAAAAAAAAAFIIvCmUaz61E0Q+LvuYvq8Vtj04gvq9AAAAAAAAAACaEuE99SdqPxFUMb4ZHtm+uBVRPc5p7b0AAAAAAAAAABoexb1TTCU/A1FMPQFitr7cy6G93jUGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.010346666666666726,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzqj5Kvn+cECUhpRSlIwBbJRNBAGMAXSUR0CjTOkR8MNMdX2UKGgGaAloD0MIYi6p2i5SckCUhpRSlGgVTSsBaBZHQKNNm7ihnJ11fZQoaAZoCWgPQwj+7bJfN7xxQJSGlFKUaBVNCwFoFkdAo021f5ULlXV9lChoBmgJaA9DCPq4NlSMfW9AlIaUUpRoFUvzaBZHQKNOVa1TisJ1fZQoaAZoCWgPQwhf0hitI8xwQJSGlFKUaBVNEwFoFkdAo0+FY6nzhHV9lChoBmgJaA9DCHGTUWWYq3BAlIaUUpRoFUv6aBZHQKNPkl67dzp1fZQoaAZoCWgPQwiVfsLZ7bdwQJSGlFKUaBVNBAFoFkdAo0+iAavRq3V9lChoBmgJaA9DCG5qoPmcE29AlIaUUpRoFU0OAWgWR0CjT9xl6JIldX2UKGgGaAloD0MIRbqfUxAXckCUhpRSlGgVS/RoFkdAo0/c3++/QHV9lChoBmgJaA9DCAYRqWlXlnJAlIaUUpRoFU0FAWgWR0CjT/NBnjABdX2UKGgGaAloD0MIhT/DmzW8ckCUhpRSlGgVTRsBaBZHQKNQfHmRvFZ1fZQoaAZoCWgPQwgZj1IJj8xwQJSGlFKUaBVNAgFoFkdAo1C8EV32VXV9lChoBmgJaA9DCMXiN4UVvG9AlIaUUpRoFU0QAWgWR0CjUOSVGCqZdX2UKGgGaAloD0MIcXK/Q1FlaUCUhpRSlGgVTVMCaBZHQKNRaAG0NSZ1fZQoaAZoCWgPQwjJAbuaPOlwQJSGlFKUaBVNDgFoFkdAo1GcOuq3mXV9lChoBmgJaA9DCLKDSlxHsXJAlIaUUpRoFU0gAWgWR0CjUfdiUgSwdX2UKGgGaAloD0MIdY9srtooc0CUhpRSlGgVTTEBaBZHQKNSWhf0Eox1fZQoaAZoCWgPQwiXrmAbMd1yQJSGlFKUaBVL5WgWR0CjUoEvsZ5zdX2UKGgGaAloD0MIQGmoUUibcECUhpRSlGgVTRQBaBZHQKNSlYHPeHl1fZQoaAZoCWgPQwimDBzQkmhyQJSGlFKUaBVNMAFoFkdAo1Mlic5Ke3V9lChoBmgJaA9DCCuIga79SnFAlIaUUpRoFUv3aBZHQKNT6BhhH9Z1fZQoaAZoCWgPQwhxHHi1XE5zQJSGlFKUaBVNAQFoFkdAo1Qtv2oNu3V9lChoBmgJaA9DCEAYeO591nBAlIaUUpRoFU0NAWgWR0CjVFb7sOXmdX2UKGgGaAloD0MIdy6M9CLGb0CUhpRSlGgVTQIBaBZHQKNUZb+tKZl1fZQoaAZoCWgPQwiQwB9+PmZwQJSGlFKUaBVL9mgWR0CjVRlGwzLwdX2UKGgGaAloD0MIlX1XBP/UckCUhpRSlGgVTSoBaBZHQKNVJE/B3zN1fZQoaAZoCWgPQwhjJ7wEZwBxQJSGlFKUaBVNGAFoFkdAo1V4EIPbwnV9lChoBmgJaA9DCLa8cr1tuHFAlIaUUpRoFUv0aBZHQKNVwyuZCv51fZQoaAZoCWgPQwgZcJaSZaJwQJSGlFKUaBVNFwFoFkdAo1Xjvy9VWHV9lChoBmgJaA9DCL05XKv93XJAlIaUUpRoFU1OAWgWR0CjVej3mFJydX2UKGgGaAloD0MI2c9iKVJCc0CUhpRSlGgVS/RoFkdAo1X9AHE/B3V9lChoBmgJaA9DCAa9N4YAh3JAlIaUUpRoFUv+aBZHQKNW0xmCiAV1fZQoaAZoCWgPQwivBigN9axwQJSGlFKUaBVNIAFoFkdAo1cEwi7kGXV9lChoBmgJaA9DCChiEcMOcm9AlIaUUpRoFUv7aBZHQKNXA+RoysV1fZQoaAZoCWgPQwiVfOwuENtyQJSGlFKUaBVNCAFoFkdAo1cmsgdOqXV9lChoBmgJaA9DCAxAo3TprVFAlIaUUpRoFUu7aBZHQKNXm0IkZ751fZQoaAZoCWgPQwgz4gLQaNhwQJSGlFKUaBVNAAFoFkdAo1ekQoTfznV9lChoBmgJaA9DCEQzT67p+HJAlIaUUpRoFU0CAWgWR0CjWFurhisodX2UKGgGaAloD0MIem02VuJdbkCUhpRSlGgVS/ZoFkdAo1hpRwZOz3V9lChoBmgJaA9DCCnPvBx2kHBAlIaUUpRoFUvyaBZHQKNmR1L8Jld1fZQoaAZoCWgPQwitM74vbqhyQJSGlFKUaBVNHQFoFkdAo2ZHddmg8XV9lChoBmgJaA9DCDmaIyt/ZXNAlIaUUpRoFUvwaBZHQKNmjcGkep51fZQoaAZoCWgPQwiy2vy/qtVxQJSGlFKUaBVNGAFoFkdAo2bktyxRmHV9lChoBmgJaA9DCLcKYqBrInJAlIaUUpRoFUvzaBZHQKNm+yfthNN1fZQoaAZoCWgPQwjw37w4sZ9xQJSGlFKUaBVL8mgWR0CjZxCB5HEudX2UKGgGaAloD0MI7kJznQb6cECUhpRSlGgVS/loFkdAo2cYvcrRSnV9lChoBmgJaA9DCK0XQznR7XJAlIaUUpRoFU0UAWgWR0CjZ2jd56dEdX2UKGgGaAloD0MIbFuU2SAGVkCUhpRSlGgVS6toFkdAo2eTKifxt3V9lChoBmgJaA9DCM+HZwmyLHBAlIaUUpRoFU0CAWgWR0CjaDIUBXCCdX2UKGgGaAloD0MIajNOQ1TUbECUhpRSlGgVS/loFkdAo2g8/wAlwHV9lChoBmgJaA9DCA3eV+WC+HBAlIaUUpRoFUv7aBZHQKNoaBJ7LMd1fZQoaAZoCWgPQwhftwiMNVNwQJSGlFKUaBVL92gWR0CjaMV8CxNZdX2UKGgGaAloD0MIgeuKGeEeckCUhpRSlGgVTR4BaBZHQKNo0k+otMB1fZQoaAZoCWgPQwiZDTLJiHNxQJSGlFKUaBVL/2gWR0CjaZ0yYXwcdX2UKGgGaAloD0MIs3kcBvNxckCUhpRSlGgVTSMBaBZHQKNqXcmjTKF1fZQoaAZoCWgPQwgTYcPT65dwQJSGlFKUaBVL72gWR0Cjapl8gIQfdX2UKGgGaAloD0MICp5CrhTccECUhpRSlGgVTRQBaBZHQKNrAgPEsJ91fZQoaAZoCWgPQwgPR1fp7oJuQJSGlFKUaBVNGwFoFkdAo2slY4hllXV9lChoBmgJaA9DCGYwRiQKmm5AlIaUUpRoFU0BAWgWR0Cja26pxWDIdX2UKGgGaAloD0MIjpHsEerucECUhpRSlGgVTQABaBZHQKNrip6yB091fZQoaAZoCWgPQwjWpxyTBbJwQJSGlFKUaBVNDwFoFkdAo2uZRyfcvnV9lChoBmgJaA9DCN18I7rn3G9AlIaUUpRoFU0VAWgWR0Cja95r56+ndX2UKGgGaAloD0MIJlEv+DSvcUCUhpRSlGgVTQ4BaBZHQKNsIBFuvU11fZQoaAZoCWgPQwhgAyLElVZxQJSGlFKUaBVNGQFoFkdAo2yDJ2dNFnV9lChoBmgJaA9DCJT2Bl8YG25AlIaUUpRoFU0AAWgWR0CjbLyeqaPTdX2UKGgGaAloD0MIRfC/lWzfcECUhpRSlGgVTQ4BaBZHQKNs/sqJ/G51fZQoaAZoCWgPQwgs81ZdhzZzQJSGlFKUaBVNGQFoFkdAo21a3uuzQnV9lChoBmgJaA9DCLFPAMUIYHNAlIaUUpRoFU0KAWgWR0CjbYCed07sdX2UKGgGaAloD0MIPiMRGgHlcECUhpRSlGgVTRIBaBZHQKNtrTNt65Z1fZQoaAZoCWgPQwhhUnx8wgByQJSGlFKUaBVL+2gWR0CjbhS/j81odX2UKGgGaAloD0MI/kgRGRb4c0CUhpRSlGgVS+poFkdAo26jm4iHI3V9lChoBmgJaA9DCGHB/YCH2m9AlIaUUpRoFU0VAWgWR0CjbzKYqoZRdX2UKGgGaAloD0MI3A2itWI0cUCUhpRSlGgVS/doFkdAo2/cZrHlwXV9lChoBmgJaA9DCL+CNGNRFHFAlIaUUpRoFU0WAWgWR0CjcABWgezVdX2UKGgGaAloD0MI4UIewY1hb0CUhpRSlGgVTQsBaBZHQKNwLhCtzS11fZQoaAZoCWgPQwhW8xyRL95yQJSGlFKUaBVNJwFoFkdAo3AvjwQUYnV9lChoBmgJaA9DCBk8TPtmznFAlIaUUpRoFU0VAWgWR0CjcEE2YOUddX2UKGgGaAloD0MIB+v/HGZxckCUhpRSlGgVTQcBaBZHQKNwcSPluFZ1fZQoaAZoCWgPQwh15bM8jw5xQJSGlFKUaBVL9mgWR0CjcGfUnXumdX2UKGgGaAloD0MIB35Uw/45cUCUhpRSlGgVS+5oFkdAo3DNapxWDHV9lChoBmgJaA9DCLVwWYWNr3FAlIaUUpRoFUv9aBZHQKNw1fKISDh1fZQoaAZoCWgPQwiNfF7xVNFvQJSGlFKUaBVL8mgWR0CjcRQblzU7dX2UKGgGaAloD0MIfEW3XtO1bUCUhpRSlGgVS/RoFkdAo3GUbkwN9nV9lChoBmgJaA9DCA5MbhRZ4m9AlIaUUpRoFU0DAWgWR0Cjcayw4bS7dX2UKGgGaAloD0MI0o+GU2bHckCUhpRSlGgVTQIBaBZHQKNzBGPxQSB1fZQoaAZoCWgPQwjG3LWEvIVyQJSGlFKUaBVNMAFoFkdAo3NAH9m6G3V9lChoBmgJaA9DCHP3OT4aDnFAlIaUUpRoFU0CAWgWR0Cjc5+6qbSadX2UKGgGaAloD0MI/Knx0s0OckCUhpRSlGgVS+ZoFkdAo3O+DjBEa3V9lChoBmgJaA9DCNcWnpfKCnNAlIaUUpRoFUviaBZHQKN0Dyd4FA51fZQoaAZoCWgPQwjY1HlUfD9xQJSGlFKUaBVL9WgWR0CjdFd9lVcVdX2UKGgGaAloD0MIS7A4nHkBckCUhpRSlGgVS/FoFkdAo3SQxi5NGnV9lChoBmgJaA9DCH6P+uuV3m1AlIaUUpRoFU0OAWgWR0CjdKMSsbNsdX2UKGgGaAloD0MIqRYRxWRjcUCUhpRSlGgVTRwBaBZHQKN1DRG+bmV1fZQoaAZoCWgPQwi4W5IDdoVyQJSGlFKUaBVL9WgWR0CjdQ10DEFXdX2UKGgGaAloD0MIAIv8+iHvcECUhpRSlGgVTRABaBZHQKN1ED9Oymh1fZQoaAZoCWgPQwhCX3r7M5ZxQJSGlFKUaBVNsAFoFkdAo3UlrEcbSHV9lChoBmgJaA9DCJqUgm5vx3FAlIaUUpRoFU0FAWgWR0CjdZdpItlJdX2UKGgGaAloD0MIyjLEse70cECUhpRSlGgVTSsBaBZHQKN15l2eQMh1fZQoaAZoCWgPQwhtPNhiNw5yQJSGlFKUaBVNIAFoFkdAo3ahpi7TUnV9lChoBmgJaA9DCNWxSumZIXNAlIaUUpRoFU0yAWgWR0CjdtilzltCdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 420,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
Lunar Lander RL model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa8f642b88ce4782d574044737cbf77da518f9aac61af99c1c33cfdad0a562ab
3
+ size 84893
Lunar Lander RL model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b3e9e36dc34100afcfd29e5149c44eca3eef621a5e1864a4a102c4bb4b51caa
3
+ size 43201
Lunar Lander RL model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
Lunar Lander RL model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 264.71 +/- 10.76
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcf4a2557a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcf4a255830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcf4a2558c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcf4a255950>", "_build": "<function ActorCriticPolicy._build at 0x7fcf4a2559e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcf4a255a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcf4a255b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcf4a255b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcf4a255c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcf4a255cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcf4a255d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcf4a2b0090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651846277.6723228, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY2UTvbI4y8Bu+gPUOzVb1iLX69jzCqvgAAgD8AAIA/zYyXvKRtW7vYvYC7+sV2PB2OiTybllW9AACAPwAAgD/Nvb68rrGJusr04rK/7EYxqlGyOe0bhjMAAIA/AACAPwC+TzxDgH28KE3jO7IHqLtw8ts9dHCHPAAAgD8AAIA/WrrLPZ8F3rsvPwI+kYFpvpa2TzxXtJy/AACAPwAAgD9gJyG+lhCKP8qiGL/DiRa/vtPtvYqQU74AAAAAAAAAAOZDeL2vEMc+G3mEPWFDj741QN07xNxJPQAAAAAAAAAApl4fvsDt1D6nIYE+vqSjvgKO1zzYp+k9AAAAAAAAAADNWbS8Z4ArPhZcfT2uOY++Pdv3u6hr8LwAAAAAAAAAAFNjkj7wzWM/0MpuvBsu6b61Mr8+1oVQvgAAAAAAAAAAzRqcvUFAAz+au0A9OTexvpOCdTzKqjk9AAAAAAAAAAAmMtE9bX3LPkdMq75QxsO+civQvc0ZVb0AAAAAAAAAAIAyMz3486s/ut/FPo1J177AOxA9xmuFPgAAAAAAAAAAAFIIvCmUaz61E0Q+LvuYvq8Vtj04gvq9AAAAAAAAAACaEuE99SdqPxFUMb4ZHtm+uBVRPc5p7b0AAAAAAAAAABoexb1TTCU/A1FMPQFitr7cy6G93jUGPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzqj5Kvn+cECUhpRSlIwBbJRNBAGMAXSUR0CjTOkR8MNMdX2UKGgGaAloD0MIYi6p2i5SckCUhpRSlGgVTSsBaBZHQKNNm7ihnJ11fZQoaAZoCWgPQwj+7bJfN7xxQJSGlFKUaBVNCwFoFkdAo021f5ULlXV9lChoBmgJaA9DCPq4NlSMfW9AlIaUUpRoFUvzaBZHQKNOVa1TisJ1fZQoaAZoCWgPQwhf0hitI8xwQJSGlFKUaBVNEwFoFkdAo0+FY6nzhHV9lChoBmgJaA9DCHGTUWWYq3BAlIaUUpRoFUv6aBZHQKNPkl67dzp1fZQoaAZoCWgPQwiVfsLZ7bdwQJSGlFKUaBVNBAFoFkdAo0+iAavRq3V9lChoBmgJaA9DCG5qoPmcE29AlIaUUpRoFU0OAWgWR0CjT9xl6JIldX2UKGgGaAloD0MIRbqfUxAXckCUhpRSlGgVS/RoFkdAo0/c3++/QHV9lChoBmgJaA9DCAYRqWlXlnJAlIaUUpRoFU0FAWgWR0CjT/NBnjABdX2UKGgGaAloD0MIhT/DmzW8ckCUhpRSlGgVTRsBaBZHQKNQfHmRvFZ1fZQoaAZoCWgPQwgZj1IJj8xwQJSGlFKUaBVNAgFoFkdAo1C8EV32VXV9lChoBmgJaA9DCMXiN4UVvG9AlIaUUpRoFU0QAWgWR0CjUOSVGCqZdX2UKGgGaAloD0MIcXK/Q1FlaUCUhpRSlGgVTVMCaBZHQKNRaAG0NSZ1fZQoaAZoCWgPQwjJAbuaPOlwQJSGlFKUaBVNDgFoFkdAo1GcOuq3mXV9lChoBmgJaA9DCLKDSlxHsXJAlIaUUpRoFU0gAWgWR0CjUfdiUgSwdX2UKGgGaAloD0MIdY9srtooc0CUhpRSlGgVTTEBaBZHQKNSWhf0Eox1fZQoaAZoCWgPQwiXrmAbMd1yQJSGlFKUaBVL5WgWR0CjUoEvsZ5zdX2UKGgGaAloD0MIQGmoUUibcECUhpRSlGgVTRQBaBZHQKNSlYHPeHl1fZQoaAZoCWgPQwimDBzQkmhyQJSGlFKUaBVNMAFoFkdAo1Mlic5Ke3V9lChoBmgJaA9DCCuIga79SnFAlIaUUpRoFUv3aBZHQKNT6BhhH9Z1fZQoaAZoCWgPQwhxHHi1XE5zQJSGlFKUaBVNAQFoFkdAo1Qtv2oNu3V9lChoBmgJaA9DCEAYeO591nBAlIaUUpRoFU0NAWgWR0CjVFb7sOXmdX2UKGgGaAloD0MIdy6M9CLGb0CUhpRSlGgVTQIBaBZHQKNUZb+tKZl1fZQoaAZoCWgPQwiQwB9+PmZwQJSGlFKUaBVL9mgWR0CjVRlGwzLwdX2UKGgGaAloD0MIlX1XBP/UckCUhpRSlGgVTSoBaBZHQKNVJE/B3zN1fZQoaAZoCWgPQwhjJ7wEZwBxQJSGlFKUaBVNGAFoFkdAo1V4EIPbwnV9lChoBmgJaA9DCLa8cr1tuHFAlIaUUpRoFUv0aBZHQKNVwyuZCv51fZQoaAZoCWgPQwgZcJaSZaJwQJSGlFKUaBVNFwFoFkdAo1Xjvy9VWHV9lChoBmgJaA9DCL05XKv93XJAlIaUUpRoFU1OAWgWR0CjVej3mFJydX2UKGgGaAloD0MI2c9iKVJCc0CUhpRSlGgVS/RoFkdAo1X9AHE/B3V9lChoBmgJaA9DCAa9N4YAh3JAlIaUUpRoFUv+aBZHQKNW0xmCiAV1fZQoaAZoCWgPQwivBigN9axwQJSGlFKUaBVNIAFoFkdAo1cEwi7kGXV9lChoBmgJaA9DCChiEcMOcm9AlIaUUpRoFUv7aBZHQKNXA+RoysV1fZQoaAZoCWgPQwiVfOwuENtyQJSGlFKUaBVNCAFoFkdAo1cmsgdOqXV9lChoBmgJaA9DCAxAo3TprVFAlIaUUpRoFUu7aBZHQKNXm0IkZ751fZQoaAZoCWgPQwgz4gLQaNhwQJSGlFKUaBVNAAFoFkdAo1ekQoTfznV9lChoBmgJaA9DCEQzT67p+HJAlIaUUpRoFU0CAWgWR0CjWFurhisodX2UKGgGaAloD0MIem02VuJdbkCUhpRSlGgVS/ZoFkdAo1hpRwZOz3V9lChoBmgJaA9DCCnPvBx2kHBAlIaUUpRoFUvyaBZHQKNmR1L8Jld1fZQoaAZoCWgPQwitM74vbqhyQJSGlFKUaBVNHQFoFkdAo2ZHddmg8XV9lChoBmgJaA9DCDmaIyt/ZXNAlIaUUpRoFUvwaBZHQKNmjcGkep51fZQoaAZoCWgPQwiy2vy/qtVxQJSGlFKUaBVNGAFoFkdAo2bktyxRmHV9lChoBmgJaA9DCLcKYqBrInJAlIaUUpRoFUvzaBZHQKNm+yfthNN1fZQoaAZoCWgPQwjw37w4sZ9xQJSGlFKUaBVL8mgWR0CjZxCB5HEudX2UKGgGaAloD0MI7kJznQb6cECUhpRSlGgVS/loFkdAo2cYvcrRSnV9lChoBmgJaA9DCK0XQznR7XJAlIaUUpRoFU0UAWgWR0CjZ2jd56dEdX2UKGgGaAloD0MIbFuU2SAGVkCUhpRSlGgVS6toFkdAo2eTKifxt3V9lChoBmgJaA9DCM+HZwmyLHBAlIaUUpRoFU0CAWgWR0CjaDIUBXCCdX2UKGgGaAloD0MIajNOQ1TUbECUhpRSlGgVS/loFkdAo2g8/wAlwHV9lChoBmgJaA9DCA3eV+WC+HBAlIaUUpRoFUv7aBZHQKNoaBJ7LMd1fZQoaAZoCWgPQwhftwiMNVNwQJSGlFKUaBVL92gWR0CjaMV8CxNZdX2UKGgGaAloD0MIgeuKGeEeckCUhpRSlGgVTR4BaBZHQKNo0k+otMB1fZQoaAZoCWgPQwiZDTLJiHNxQJSGlFKUaBVL/2gWR0CjaZ0yYXwcdX2UKGgGaAloD0MIs3kcBvNxckCUhpRSlGgVTSMBaBZHQKNqXcmjTKF1fZQoaAZoCWgPQwgTYcPT65dwQJSGlFKUaBVL72gWR0Cjapl8gIQfdX2UKGgGaAloD0MICp5CrhTccECUhpRSlGgVTRQBaBZHQKNrAgPEsJ91fZQoaAZoCWgPQwgPR1fp7oJuQJSGlFKUaBVNGwFoFkdAo2slY4hllXV9lChoBmgJaA9DCGYwRiQKmm5AlIaUUpRoFU0BAWgWR0Cja26pxWDIdX2UKGgGaAloD0MIjpHsEerucECUhpRSlGgVTQABaBZHQKNrip6yB091fZQoaAZoCWgPQwjWpxyTBbJwQJSGlFKUaBVNDwFoFkdAo2uZRyfcvnV9lChoBmgJaA9DCN18I7rn3G9AlIaUUpRoFU0VAWgWR0Cja95r56+ndX2UKGgGaAloD0MIJlEv+DSvcUCUhpRSlGgVTQ4BaBZHQKNsIBFuvU11fZQoaAZoCWgPQwhgAyLElVZxQJSGlFKUaBVNGQFoFkdAo2yDJ2dNFnV9lChoBmgJaA9DCJT2Bl8YG25AlIaUUpRoFU0AAWgWR0CjbLyeqaPTdX2UKGgGaAloD0MIRfC/lWzfcECUhpRSlGgVTQ4BaBZHQKNs/sqJ/G51fZQoaAZoCWgPQwgs81ZdhzZzQJSGlFKUaBVNGQFoFkdAo21a3uuzQnV9lChoBmgJaA9DCLFPAMUIYHNAlIaUUpRoFU0KAWgWR0CjbYCed07sdX2UKGgGaAloD0MIPiMRGgHlcECUhpRSlGgVTRIBaBZHQKNtrTNt65Z1fZQoaAZoCWgPQwhhUnx8wgByQJSGlFKUaBVL+2gWR0CjbhS/j81odX2UKGgGaAloD0MI/kgRGRb4c0CUhpRSlGgVS+poFkdAo26jm4iHI3V9lChoBmgJaA9DCGHB/YCH2m9AlIaUUpRoFU0VAWgWR0CjbzKYqoZRdX2UKGgGaAloD0MI3A2itWI0cUCUhpRSlGgVS/doFkdAo2/cZrHlwXV9lChoBmgJaA9DCL+CNGNRFHFAlIaUUpRoFU0WAWgWR0CjcABWgezVdX2UKGgGaAloD0MI4UIewY1hb0CUhpRSlGgVTQsBaBZHQKNwLhCtzS11fZQoaAZoCWgPQwhW8xyRL95yQJSGlFKUaBVNJwFoFkdAo3AvjwQUYnV9lChoBmgJaA9DCBk8TPtmznFAlIaUUpRoFU0VAWgWR0CjcEE2YOUddX2UKGgGaAloD0MIB+v/HGZxckCUhpRSlGgVTQcBaBZHQKNwcSPluFZ1fZQoaAZoCWgPQwh15bM8jw5xQJSGlFKUaBVL9mgWR0CjcGfUnXumdX2UKGgGaAloD0MIB35Uw/45cUCUhpRSlGgVS+5oFkdAo3DNapxWDHV9lChoBmgJaA9DCLVwWYWNr3FAlIaUUpRoFUv9aBZHQKNw1fKISDh1fZQoaAZoCWgPQwiNfF7xVNFvQJSGlFKUaBVL8mgWR0CjcRQblzU7dX2UKGgGaAloD0MIfEW3XtO1bUCUhpRSlGgVS/RoFkdAo3GUbkwN9nV9lChoBmgJaA9DCA5MbhRZ4m9AlIaUUpRoFU0DAWgWR0Cjcayw4bS7dX2UKGgGaAloD0MI0o+GU2bHckCUhpRSlGgVTQIBaBZHQKNzBGPxQSB1fZQoaAZoCWgPQwjG3LWEvIVyQJSGlFKUaBVNMAFoFkdAo3NAH9m6G3V9lChoBmgJaA9DCHP3OT4aDnFAlIaUUpRoFU0CAWgWR0Cjc5+6qbSadX2UKGgGaAloD0MI/Knx0s0OckCUhpRSlGgVS+ZoFkdAo3O+DjBEa3V9lChoBmgJaA9DCNcWnpfKCnNAlIaUUpRoFUviaBZHQKN0Dyd4FA51fZQoaAZoCWgPQwjY1HlUfD9xQJSGlFKUaBVL9WgWR0CjdFd9lVcVdX2UKGgGaAloD0MIS7A4nHkBckCUhpRSlGgVS/FoFkdAo3SQxi5NGnV9lChoBmgJaA9DCH6P+uuV3m1AlIaUUpRoFU0OAWgWR0CjdKMSsbNsdX2UKGgGaAloD0MIqRYRxWRjcUCUhpRSlGgVTRwBaBZHQKN1DRG+bmV1fZQoaAZoCWgPQwi4W5IDdoVyQJSGlFKUaBVL9WgWR0CjdQ10DEFXdX2UKGgGaAloD0MIAIv8+iHvcECUhpRSlGgVTRABaBZHQKN1ED9Oymh1fZQoaAZoCWgPQwhCX3r7M5ZxQJSGlFKUaBVNsAFoFkdAo3UlrEcbSHV9lChoBmgJaA9DCJqUgm5vx3FAlIaUUpRoFU0FAWgWR0CjdZdpItlJdX2UKGgGaAloD0MIyjLEse70cECUhpRSlGgVTSsBaBZHQKN15l2eQMh1fZQoaAZoCWgPQwhtPNhiNw5yQJSGlFKUaBVNIAFoFkdAo3ahpi7TUnV9lChoBmgJaA9DCNWxSumZIXNAlIaUUpRoFU0yAWgWR0CjdtilzltCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 420, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bb65b5ea7838cc6a21cab215be3296d278909148b4d0e676923ea0ea6ab760e
3
+ size 243436
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.70915465065633, "std_reward": 10.756344281103795, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T14:51:54.643015"}