File size: 1,016 Bytes
03a8069 e020ca5 03a8069 8a2b4c1 03a8069 20e546d 03a8069 edd37eb 03a8069 e020ca5 03a8069 26263d9 03a8069 e020ca5 39273c8 c919bbd 03a8069 9a9dde9 03a8069 9a9dde9 39273c8 1c231a0 03a8069 c919bbd 39273c8 1c231a0 03a8069 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
tags:
- HealthGatheringSupreme-v1
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
- sample-factory
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 18.30 +/- 8.82
name: mean_reward
verified: false
---
# PPO Agent Playing HealthGatheringSupreme-v1
This is a trained model of a PPO agent playing HealthGatheringSupreme-v1 using a custom
CleanRL PPO implementation (not sample factory).
# Hyperparameters
```python
{'env_id': 'HealthGatheringSupreme-v1'
'learning_rate': 0.0001
'learning_rate_min': 1e-06
'gamma': 0.99
'gae_lambda': 0.95
'clip_coef': 0.2
'total_timesteps': 10000000
'recurrence': 32
'ent_coef': 0.001
'vf_coef': 0.5
'max_grad_norm': 0.5
'num_minibatches': 4
'update_epochs': 1
'frame_skip': 4}
```
|