File size: 1,016 Bytes
03a8069
 
e020ca5
03a8069
 
 
 
 
8a2b4c1
03a8069
 
 
 
 
 
 
20e546d
 
03a8069
 
edd37eb
03a8069
 
 
 
e020ca5
03a8069
26263d9
 
03a8069
 
 
e020ca5
39273c8
c919bbd
03a8069
9a9dde9
03a8069
9a9dde9
39273c8
1c231a0
03a8069
c919bbd
39273c8
1c231a0
 
03a8069
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
tags:
- HealthGatheringSupreme-v1
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
- sample-factory
model-index:
- name: PPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: doom_health_gathering_supreme
      type: doom_health_gathering_supreme
    metrics:
    - type: mean_reward
      value: 18.30 +/- 8.82
      name: mean_reward
      verified: false
---

  # PPO Agent Playing HealthGatheringSupreme-v1

  This is a trained model of a PPO agent playing HealthGatheringSupreme-v1 using a custom 
  CleanRL PPO implementation (not sample factory).

  # Hyperparameters
  ```python
  {'env_id': 'HealthGatheringSupreme-v1'
'learning_rate': 0.0001
'learning_rate_min': 1e-06
'gamma': 0.99
'gae_lambda': 0.95
'clip_coef': 0.2
'total_timesteps': 10000000
'recurrence': 32
'ent_coef': 0.001
'vf_coef': 0.5
'max_grad_norm': 0.5
'num_minibatches': 4
'update_epochs': 1
'frame_skip': 4}
  ```