File size: 15,731 Bytes
4f9c904 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7552a64025e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7552a6402670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7552a6402700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7552a6402790>", "_build": "<function ActorCriticPolicy._build at 0x7552a6402820>", "forward": "<function ActorCriticPolicy.forward at 0x7552a64028b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7552a6402940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7552a64029d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7552a6402a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7552a6402af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7552a6402b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7552a6402c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7552a63fab40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 640000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718200034652872165, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAACZMQT4KxX08nVxuvlSKtb6ON508rQhDvgAAAAAAAAAAM14iPY8CGTkowyO8ilQbNpNCLztDvpO1AACAPwAAgD8AgKq6ZYuvPx0AZrxvL9i+e7USu2J92rsAAAAAAAAAABq5oT0ZIpA/G3EWPrtaDL+P5Ca+eGUzPQAAAAAAAAAA8xnzvUb0yD+M5wG/fuUTPi3XrL2jSeu9AAAAAAAAAAByX5C+cnkxP+6ZCL85j9C+TIXCvaDXtb0AAAAAAAAAAGEiML9FrhA/7ne8vlJiJL98xzS+epQivQAAAAAAAAAAhjEEPlJSkjqOHDM7/wDwOA+aDzwmYZm5AACAPwAAgD9mS9Q8WFGjPwUA2D0AMKq+tmBHvRFmw70AAAAAAAAAAH3Zsz70AzM/WyerPhW8Gb/4BoQ+BqkCPQAAAAAAAAAA6jgwv7VNuT6ZWp6/5pkrv8HvqbyOVBO+AAAAAAAAAAAAIg+8q56iP9luirxDAum+uOcaPY7wqjwAAAAAAAAAAFsj1b7DElI/i9UMvyMfJL8t2lC+WKKFvQAAAAAAAAAAMFPMvsU1Sj+ibri+tUgyv30VgL5FSoE6AAAAAAAAAADzGf4+yM7GPYIO670k39q8EbujPg5m5jsAAIA/AACAPyYMQz6n8oU/puUlP++tHL83SHs96rTKPQAAAAAAAAAAGoZ8vaK8jz49tv67x4nBvpXlHD07X8W8AAAAAAAAAADeB9q+6Tt0PyqJH79fJQy/+IEZvvU3pz0AAAAAAAAAAGaPRr3DPUO6tgLrPARojLb6+QE7cgGCtQAAgD8AAIA/vbHiPg1/nD7WLQU/GglFv4RvxD0lnqQ9AAAAAAAAAABAwEi+WXkWPz+Gh74aFSS/f8mGPQZrwT0AAAAAAAAAAIBS+D5mfs0+GXYAPgK2Mr+bDAw/233CvQAAAAAAAAAA3kGJvm4LjD/iHRa/edQKv/4lhr5mHie+AAAAAAAAAAA2V8A+9z0nvbKNnTw13ag8nulpvXQAq70AAAAAAAAAAM3kd7vagrU/HpBKvrZKFT7TrNI7YGOvPQAAAAAAAAAAHWrOvk1/4D6UATC+1dPzvlamw70rglY8AAAAAAAAAABa8za+bwUhPys427489B6/yXzfPGpsjb0AAAAAAAAAAE0Bfb3u4a0/cIvSvkFyhL6V0v46CghbvQAAAAAAAAAA5qJ1vfPXoj8yv6q+fUP9vs61QjwgHpU9AAAAAAAAAAAzzNk8k3SwP3Kkoz4Z3He+TuIHvFhrLDwAAAAAAAAAAJNbDL6Y82I/GKOEvnzUIr+WOJs8xxaBPQAAAAAAAAAAbT0SPh/T/TwmFD0+9GoUv9WE0b6TAuU+AACAPwAAAAANqBu+96ugP/gXL7+3pMq+DJrxPNGgEb4AAAAAAAAAAE0yIL078bM/CnxIvs1Dqr25PLU7aio6vQAAAAAAAAAAMyFRvcm4qT8eqZy+T2u1vk1h3DrXyLO9AAAAAAAAAACd+Ya+oPQPP1tCWj6xn/u+0ayjvlYkmz0AAAAAAAAAAGbn8T24UM86w0cePFs5WbtxB7W7dIqlvAAAAAAAAAAARr9SPiC5jD6Lu1Q+/MYXvxcjZz7fbA0+AAAAAAAAAACbOwi/LomKOztTOr12kZe9qOtHPc1H57wAAAAAAAAAANrGjz32QES6ZoIqPTSxNDvIYyQ7/QkdvAAAgD8AAIA/IN0EP9hh1z66lYY+edUGv5lrT733mwQ9AAAAAAAAAABg8zk/Ojm9vqIf/7vrIKU7hmIDv6L1mD4AAIA/AAAAAAUwub5j4GU/0/GhvY5HAr96UdC9jmi3PQAAAAAAAAAADevmPezJvLm1zVo8nRoyOdijXTs0GS44AACAPwAAgD9wFbI+byb6PuiIvj3L2gu/cCv1PhpW7T0AAAAAAAAAAJrAjrx9YbA/E/y2visWnb42LIA82nSaPQAAAAAAAAAAMqQJP5lIAT8SCM4+leUEv7cwpz4KGJc9AAAAAAAAAAAzYSC88Kx+P6fevrz8qxu/CXdkPZGtvz0AAAAAAAAAACbf+D34HDc/PvBnPpZIGb8WQas9VjMpPgAAAAAAAAAALX0ivquuKD/yICG+s87QviGipr3Fisy8AAAAAAAAAAC62yO+JmSuPw9eC7+Ds3y+QbrHvY6IWr0AAAAAAAAAACXuW79B3KG+E7mcPP0OIT3wgB6+8mSIOwAAgD8AAIA/AH24vCJE6D6S8pq8WmIbv9Pl/D2TLGg9AAAAAAAAAABaFz4+nwIwP3sLeD7EoSq/n8G8PNwMQ7wAAAAAAAAAAM2ycj1OxNy8HLMGPY2S4b5OH7a8IxskPwAAgD8AAIA/ZhiFPD4Wuz+/yZQ9AOeWvKcj57usRko9AAAAAAAAAABNLI8+f1R7P1Mwsj6UPhS//qgiPqbFnDsAAAAAAAAAAJrJLz1xrKQ+Ca4ivvdl8r6xdv49krHcvQAAAAAAAAAAZs5yuwpXcDpGUYW8itWfPEicebvqxhw8AAAAAAAAAACaoWc9pF5bu8NFdDvGJ5q7Hj+PPF9lhTwAAIA/AACAPxNLKL7GYJU/zo7bvnqzlr4lhyY9+1aCPQAAAAAAAAAAM5/tu3ohsz/iCTy/vWcCv1zICTzCXyo+AAAAAAAAAACgZjM+O0RUPzP1qj6UcDC/3w6XPS5eDj4AAAAAAAAAAMPIi75MlkU/hjUQv6tqQL/fhDg9P52JPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.410176, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDZI91U2kzqMAWyUS2WMAXSUR0BSKuxfOUt7dX2UKGgGR0AqYtSQ5myxaAdLaGgIR0BSKuYlY2bYdX2UKGgGR8BNkVCojv/jaAdLfGgIR0BSMCa7VawEdX2UKGgGR8A/cl0YCQtBaAdLYWgIR0BSMe0ojOcEdX2UKGgGR8A5gDKHO8kEaAdLZWgIR0BSMeSbH6uXdX2UKGgGR8BFRXu3MINWaAdLuWgIR0BSM07Sy+pPdX2UKGgGR8AU7Zbpu/DcaAdLqGgIR0BSNE6kqMFVdX2UKGgGR0Aaqn62v0ROaAdLnGgIR0BSNp7CzkZKdX2UKGgGR0AHgd0aIeo2aAdLgGgIR0BSONI065oXdX2UKGgGR8BFOtr9ETg3aAdLbGgIR0BSOWiUPhAGdX2UKGgGR8BKNQNLDhtMaAdLc2gIR0BSOyEtdzGQdX2UKGgGR8BBD9hAnlXBaAdLbGgIR0BSOwOBlMAWdX2UKGgGR8BKM7CaZx7zaAdLd2gIR0BSPjx0+1SgdX2UKGgGR0ASXdnCfpUxaAdLfGgIR0BSQTsdDIBBdX2UKGgGR0AIv8ZUDMePaAdLgWgIR0BSQegDifg8dX2UKGgGR8BJimQr+YMOaAdLmmgIR0BSQcmjTKDDdX2UKGgGR8AastI065oXaAdLlGgIR0BSQnSjQAuJdX2UKGgGRz/xLBbfP5YYaAdLlWgIR0BSQxHskY4ydX2UKGgGR0Akq/ATIvJzaAdLcmgIR0BSQ5xiobXIdX2UKGgGR8AiZ5uZTho/aAdLomgIR0BSRJbUwztUdX2UKGgGR0AydprULDyfaAdLl2gIR0BSSKjnFHawdX2UKGgGR8AoHtdiUgSwaAdLa2gIR0BSScOPNmlJdX2UKGgGRz/iEhRqGlANaAdLcmgIR0BSSmL1mJ3xdX2UKGgGR0A4NY3vQWvbaAdLamgIR0BSS3bh3qzJdX2UKGgGR0BN1rHuJDVpaAdLi2gIR0BSTbK3d9DydX2UKGgGR8BCILmITGo8aAdLgmgIR0BST3kcS5AhdX2UKGgGR8AkZQDV6NVBaAdLcmgIR0BSUU5IYm9hdX2UKGgGR8AzjlxwQ176aAdLWWgIR0BSUf029+PSdX2UKGgGR0A2hZNO/L1VaAdLeGgIR0BSVTzqbBoFdX2UKGgGRz//iuyNXHR1aAdLg2gIR0BSVq8+RoysdX2UKGgGR8AyEqSX+l0paAdLlmgIR0BSWXDvVmSRdX2UKGgGR7/vzNdJJ5E/aAdLfmgIR0BSWsUM5OrRdX2UKGgGR0A7jEvkBCD3aAdLjGgIR0BSWykj5bhWdX2UKGgGR0A7QhUBGQS0aAdLkmgIR0BSYA3xWkrPdX2UKGgGR0BBi0GNaQmvaAdLa2gIR0BSX/XK8tf5dX2UKGgGR8AoB2q1gH/taAdLoWgIR0BSYfr4WUKRdX2UKGgGR8BBZbwKBun/aAdLvWgIR0BSYdwaR6njdX2UKGgGR8BVMSsr/bTMaAdLs2gIR0BSYwO8TSLJdX2UKGgGR8AVVV6u4gA7aAdLc2gIR0BSZkdaMaS+dX2UKGgGR0AAYuRLbpNcaAdLZ2gIR0BSZiYw7DEWdX2UKGgGR8AUHvNNahYeaAdLgGgIR0BSZ2ois4kvdX2UKGgGR8BHg56Uqx1QaAdLmWgIR0BSZ+CK77KrdX2UKGgGR8BJbX5eqrBCaAdLrGgIR0BSaJTho/RmdX2UKGgGR8BXJoDoyKvWaAdLhmgIR0BSaIg7o0Q9dX2UKGgGR0AjqF0xM36zaAdLjmgIR0BSaVPnB+F2dX2UKGgGR8BSfa3mV7hOaAdLr2gIR0BSacP4EfT1dX2UKGgGR8AwuANoakylaAdLWmgIR0BSbWmgrYoRdX2UKGgGR0AOQuIyj59FaAdLtmgIR0BScE4R28qXdX2UKGgGR8A4MNQ0oBq9aAdLg2gIR0BSdIz7/GVBdX2UKGgGR0AgHUqhDgIhaAdLcmgIR0BSdIkiUxEfdX2UKGgGR8BI9Zj6N2kjaAdLZWgIR0BSdoyXUpd9dX2UKGgGR8Ayyrfcer+6aAdLgmgIR0BSdm+CbtqpdX2UKGgGR8BFfshgVoHtaAdLimgIR0BSd7xRVIZqdX2UKGgGR0AjmHh0hePaaAdLp2gIR0BSeZeAuqWDdX2UKGgGR8BGyTakAPupaAdLZWgIR0BSehVQyhzvdX2UKGgGR8Axa+vhZQpGaAdLZmgIR0BSfeJ53TuwdX2UKGgGR8A2u2lVLi++aAdLhmgIR0BSfw2AG0NSdX2UKGgGR8BRtQMc6vJSaAdLpGgIR0BSgI0Q9RrKdX2UKGgGR8ACFajesPrfaAdLiGgIR0BSgk1dgOSXdX2UKGgGR8A3qzUqhDgJaAdLWWgIR0BShWorFwT/dX2UKGgGR8AOMiyIHkcTaAdLf2gIR0BShrzCk43ndX2UKGgGR8A0IVqN6w+uaAdLjmgIR0BSiKQq7ROUdX2UKGgGR0BGWwKSgXdkaAdLdmgIR0BSiVN+LFXJdX2UKGgGR8A8NPkJa7mMaAdLpmgIR0BSif8MuvlmdX2UKGgGR0A06HWBjFyaaAdLdGgIR0BSkPeYUnG9dX2UKGgGR8BEY/PPcBU8aAdLsWgIR0BSlFglWwNcdX2UKGgGR0A5biQT238XaAdLimgIR0BSlvPkaMrFdX2UKGgGR8A/AoF3Y+SsaAdLcmgIR0BSmGJvYODrdX2UKGgGR8AkCk8A7xNJaAdLY2gIR0BSmFjurp7kdX2UKGgGR8BIQulwcYIjaAdLpGgIR0BSmch1Tzd2dX2UKGgGR0A1yOmBOHnEaAdLlmgIR0BSnucQRPGidX2UKGgGR8Ah1PO6d1+zaAdLbmgIR0BSn3zH0btJdX2UKGgGR0A+5FspG4I9aAdLgmgIR0BSn3/T9bX6dX2UKGgGR8A5zJSiudPMaAdLfWgIR0BSoEjLSuyNdX2UKGgGR0A1p5U96kZaaAdL2WgIR0BSoX752yLRdX2UKGgGR8BJLYywfQruaAdLtmgIR0BSowyEcsDodX2UKGgGR0BC3dAX2ugZaAdLemgIR0BSouTvAoG6dX2UKGgGR8ASDcO9WZJDaAdLkWgIR0BSpPWpZOi4dX2UKGgGR8BIB9FnZkCnaAdLn2gIR0BSpwSrYGt7dX2UKGgGR8AxfnIhhYvGaAdLcWgIR0BSqOmFajesdX2UKGgGR8Atcjj7yhBaaAdLpWgIR0BSrEjLSuyNdX2UKGgGR8A03JemelKsaAdLf2gIR0BSrPNqxkd4dX2UKGgGR8A9b7el9BrvaAdLpGgIR0BSsF67dznzdX2UKGgGR7//ElJHy3CsaAdLemgIR0BSsSLZSNwSdX2UKGgGR8A70Kp1ie/YaAdLsWgIR0BSsQYtQKrrdX2UKGgGR0BDZ03XI2fkaAdLbmgIR0BStdorWiDedX2UKGgGR8AzA6l+EytWaAdLdGgIR0BStcQZn+Q2dX2UKGgGR8BEz+Idlum8aAdLmWgIR0BSuWJemelLdX2UKGgGR0AM2LvTgEU1aAdLe2gIR0BSuguIyj59dX2UKGgGR0A5jXAM2FWXaAdLrmgIR0BSuqDbrTpgdX2UKGgGR0Ang07bL2YfaAdLbWgIR0BSvVcyFfzCdX2UKGgGR8AdUh2W6bvxaAdLbmgIR0BSvf/NqxkedX2UKGgGR8A1rZv1lGwzaAdLhGgIR0BSvqjrRjSYdX2UKGgGR8A97zHS4OMEaAdLj2gIR0BSv2Ef1YhddX2UKGgGR0AsMk5ZKWcCaAdLiWgIR0BSwBxT850bdX2UKGgGR8A4uU/fO2RaaAdLmWgIR0BSxB6Ww/xEdX2UKGgGR8BEhUg8r7O3aAdLcmgIR0BSxj6N2ki2dX2UKGgGR8BMFPmHP/rCaAdLk2gIR0BSxwuyu6mPdX2UKGgGR0AkRVH4GlhxaAdLeGgIR0BSyEuDjBEbdX2UKGgGR8BBluWSlnAZaAdLm2gIR0BSyOLWI42kdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 36, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.8.0-35-lowlatency-x86_64-with-glibc2.29 # 35.1-Ubuntu SMP PREEMPT_DYNAMIC Thu May 23 14:15:41 UTC 2024", "Python": "3.8.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}} |