File size: 8,928 Bytes
49698fa f84d8cb 49698fa f84d8cb 49698fa f84d8cb 49698fa 00c0e7f f029ef5 67020a8 e21e109 2ae540e f029ef5 f84d8cb f029ef5 f84d8cb f029ef5 00c0e7f f84d8cb 46c2566 c482d53 f84d8cb fecae54 c482d53 f84d8cb 9164400 f84d8cb 49698fa f84d8cb 49698fa f84d8cb 49698fa 00c0e7f f84d8cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
### This is example of the script that will be run in the test environment.
### Some parts of the code are compulsory and you should NOT CHANGE THEM.
### They are between '''---compulsory---''' comments.
### You can change the rest of the code to define and test your solution.
### However, you should not change the signature of the provided function.
### The script would save "submission.parquet" file in the current directory.
### The actual logic of the solution is implemented in the `handcrafted_solution.py` file.
### The `handcrafted_solution.py` file is a placeholder for your solution.
### You should implement the logic of your solution in that file.
### You can use any additional files and subdirectories to organize your code.
'''---compulsory---'''
# import subprocess
# from pathlib import Path
# def install_package_from_local_file(package_name, folder='packages'):
# """
# Installs a package from a local .whl file or a directory containing .whl files using pip.
# Parameters:
# path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
# """
# try:
# pth = str(Path(folder) / package_name)
# subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
# "--no-index", # Do not use package index
# "--find-links", pth, # Look for packages in the specified directory or at the file
# package_name]) # Specify the package to install
# print(f"Package installed successfully from {pth}")
# except subprocess.CalledProcessError as e:
# print(f"Failed to install package from {pth}. Error: {e}")
# install_package_from_local_file('hoho')
import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
# import subprocess
# import importlib
# from pathlib import Path
# import subprocess
# ### The function below is useful for installing additional python wheels.
# def install_package_from_local_file(package_name, folder='packages'):
# """
# Installs a package from a local .whl file or a directory containing .whl files using pip.
# Parameters:
# path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
# """
# try:
# pth = str(Path(folder) / package_name)
# subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
# "--no-index", # Do not use package index
# "--find-links", pth, # Look for packages in the specified directory or at the file
# package_name]) # Specify the package to install
# print(f"Package installed successfully from {pth}")
# except subprocess.CalledProcessError as e:
# print(f"Failed to install package from {pth}. Error: {e}")
# pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
# install_package_from_local_file('webdataset')
# install_package_from_local_file('tqdm')
### Here you can import any library or module you want.
### The code below is used to read and parse the input dataset.
### Please, do not modify it.
import webdataset as wds
from tqdm import tqdm
from typing import Dict
import pandas as pd
from transformers import AutoTokenizer
import os
import time
import io
from PIL import Image as PImage
import numpy as np
from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
from hoho import proc, Sample
def convert_entry_to_human_readable(entry):
out = {}
already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
for k, v in entry.items():
if k in already_good:
out[k] = v
continue
if k == 'points3d':
out[k] = read_points3D_binary(fid=io.BytesIO(v))
if k == 'cameras':
out[k] = read_cameras_binary(fid=io.BytesIO(v))
if k == 'images':
out[k] = read_images_binary(fid=io.BytesIO(v))
if k in ['ade20k', 'gestalt']:
out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
if k == 'depthcm':
out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
return out
'''---end of compulsory---'''
### The part below is used to define and test your solution.
import subprocess
import sys
import os
import numpy as np
# os.environ['MKL_THREADING_LAYER'] = 'GNU'
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
def download_packages(packages, folder='packages/torch'):
"""
Downloads packages as .whl files into the specified folder using pip.
Parameters:
packages (list): List of packages to download with versions.
folder (str): The folder where the .whl files will be saved.
"""
Path(folder).mkdir(parents=True, exist_ok=True)
try:
subprocess.check_call([sys.executable, "-m", "pip", "download",
"--platform", "manylinux1_x86_64",
"--python-version", "38",
"--only-binary=:all:",
"-d", folder] + packages)
print(f"Packages downloaded successfully into {folder}")
except subprocess.CalledProcessError as e:
print(f"Failed to download packages. Error: {e}")
def install_package_from_local_file(package_name, folder='packages'):
"""
Installs a package from a local .whl file or a directory containing .whl files using pip.
Parameters:
package_name (str): The name of the package to install.
folder (str): The folder where the .whl files are located.
"""
try:
pth = str(Path(folder) / package_name)
subprocess.check_call([sys.executable, "-m", "pip", "install",
"--no-index", # Do not use package index
"--find-links", pth, # Look for packages in the specified directory or at the file
package_name]) # Specify the package to install
print(f"Package installed successfully from {pth}")
except subprocess.CalledProcessError as e:
print(f"Failed to install package from {pth}. Error: {e}")
def setup_environment():
# Download required packages
# pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
# packages_to_download = ['torch==1.13.1', 'torchvision==0.14.1', 'torchaudio==0.13.1']
# download_packages(packages_to_download, folder='packages/torch')
# Install packages from local files
install_package_from_local_file('torch', folder='packages')
install_package_from_local_file('packages/torch/torchvision-0.14.1-cp38-cp38-manylinux1_x86_64.whl', folder='packages/torch')
install_package_from_local_file('packages/torch/torchaudio-0.13.1-cp38-cp38-manylinux1_x86_64.whl', folder='packages/torch')
install_package_from_local_file('scikit-learn', folder='packages')
install_package_from_local_file('open3d', folder='packages')
install_package_from_local_file('easydict', folder='packages')
# download_packages(['scikit-learn'], folder='packages/scikit-learn')
# download_packages(['open3d'], folder='packages/open3d')
# download_packages(['easydict'], folder='packages/easydict')
pc_util_path = os.path.join(os.getcwd(), 'pc_util')
if os.path.isdir(pc_util_path):
os.chdir(pc_util_path)
subprocess.check_call([sys.executable, "setup.py", "install"])
else:
print(f"Directory {pc_util_path} does not exist")
from pathlib import Path
def save_submission(submission, path):
"""
Saves the submission to a specified path.
Parameters:
submission (List[Dict[]]): The submission to save.
path (str): The path to save the submission to.
"""
sub = pd.DataFrame(submission, columns=["__key__", "wf_vertices", "wf_edges"])
sub.to_parquet(path)
print(f"Submission saved to {path}")
if __name__ == "__main__":
setup_environment()
from handcrafted_solution import predict
print ("------------ Loading dataset------------ ")
params = hoho.get_params()
dataset = hoho.get_dataset(decode=None, split='all', dataset_type='webdataset')
print('------------ Now you can do your solution ---------------')
solution = []
from concurrent.futures import ProcessPoolExecutor
with ProcessPoolExecutor(max_workers=8) as pool:
results = []
for i, sample in enumerate(tqdm(dataset)):
results.append(pool.submit(predict, sample, visualize=False))
for i, result in enumerate(tqdm(results)):
key, pred_vertices, pred_edges = result.result()
solution.append({
'__key__': key,
'wf_vertices': pred_vertices.tolist(),
'wf_edges': pred_edges
})
if i % 100 == 0:
# incrementally save the results in case we run out of time
print(f"Processed {i} samples")
# save_submission(solution, Path(params['output_path']) / "submission.parquet")
print('------------ Saving results ---------------')
save_submission(solution, Path(params['output_path']) / "submission.parquet")
print("------------ Done ------------ ")
|