Commit
·
9f2ece2
1
Parent(s):
d16047f
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ["ru"]
|
3 |
+
tags:
|
4 |
+
- russian
|
5 |
+
- classification
|
6 |
+
- sentiment
|
7 |
+
- multiclass
|
8 |
+
datasets:
|
9 |
+
- cedr
|
10 |
+
widget:
|
11 |
+
- text: "Бесишь меня, падла"
|
12 |
+
- text: "Как здорово, что все мы здесь сегодня собрались"
|
13 |
+
- text: "Как-то стрёмно, давай уйдём отсюда?"
|
14 |
+
- text: "Грусть-тоска меня съедает"
|
15 |
+
- text: "Данный фрагмент текста не содержит абсолютно никаких эмоций"
|
16 |
+
- text: "Надо же, неужели так тоже бывает!"
|
17 |
+
|
18 |
+
---
|
19 |
+
This is the [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) model fine-tuned for classification of emotions in Russian sentences. The task is multilabel classification, because one sentence can contain multiple emotions.
|
20 |
+
|
21 |
+
The model on the [CEDR dataset](https://huggingface.co/datasets/cedr) described in the paper ["Data-Driven Model for Emotion Detection in Russian Texts"](https://doi.org/10.1016/j.procs.2021.06.075) by Sboev et al.
|
22 |
+
|
23 |
+
The model has been trained with Adam optimizer for 40 epochs with learning rate `1e-5` and batch size 64 [in this notebook](https://colab.research.google.com/drive/1AFW70EJaBn7KZKRClDIdDUpbD46cEsat?usp=sharing).
|
24 |
+
|
25 |
+
ROC AUC of the predicted probabilities on the test dataset is the following:
|
26 |
+
|
27 |
+
| label | no emotion | joy |sadness |surprise| fear |anger | mean |
|
28 |
+
|-------|------------|--------|--------|--------|--------|--------| --------|
|
29 |
+
| AUC | 0.9406 | 0.9518 | 0.9372 | 0.8634 | 0.9663 | 0.6761 | 0.8892 |
|