File size: 2,484 Bytes
7d94aea
0e55d70
 
 
 
 
 
 
 
7d94aea
 
0e55d70
 
7d94aea
0e55d70
7d94aea
0e55d70
 
77e2c82
7d94aea
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
 
 
 
 
 
 
 
 
 
77e2c82
0e55d70
7d94aea
0e55d70
7d94aea
0e55d70
 
77e2c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d94aea
 
0e55d70
7d94aea
0e55d70
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: coinplusfire_llm_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# coinplusfire_llm_2

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1450

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2919        | 0.99  | 51   | 1.8319          |
| 1.6082        | 1.99  | 103  | 1.6426          |
| 1.4689        | 3.0   | 155  | 1.5522          |
| 1.3821        | 4.0   | 207  | 1.4883          |
| 1.3406        | 4.99  | 258  | 1.4421          |
| 1.2592        | 5.99  | 310  | 1.3900          |
| 1.2115        | 7.0   | 362  | 1.3508          |
| 1.1705        | 8.0   | 414  | 1.3213          |
| 1.1555        | 8.99  | 465  | 1.2913          |
| 1.1031        | 9.99  | 517  | 1.2629          |
| 1.0727        | 11.0  | 569  | 1.2418          |
| 1.0481        | 12.0  | 621  | 1.2208          |
| 1.0466        | 12.99 | 672  | 1.1971          |
| 1.006         | 13.99 | 724  | 1.1864          |
| 0.989         | 15.0  | 776  | 1.1732          |
| 0.9719        | 16.0  | 828  | 1.1589          |
| 0.979         | 16.99 | 879  | 1.1535          |
| 0.9494        | 17.99 | 931  | 1.1469          |
| 0.9401        | 19.0  | 983  | 1.1449          |
| 0.9302        | 19.71 | 1020 | 1.1450          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2