codefuse-admin
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tasks:
|
|
14 |
|
15 |
## Model Description
|
16 |
|
17 |
-
CodeFuse-DeepSeek-33B-4bits is the 4-bit quantized version of [CodeFuse-DeepSeek-33B](https://
|
18 |
|
19 |
After undergoing 4-bit quantization, the CodeFuse-DeepSeek-33B-4bits model can be loaded on either a single A10 (24GB VRAM) or an RTX 4090 (24GB VRAM). Moreover, the quantized model still achives an impressive accuracy of 78.05% on the Humaneval pass@1 metric.
|
20 |
|
@@ -34,9 +34,9 @@ After undergoing 4-bit quantization, the CodeFuse-DeepSeek-33B-4bits model can b
|
|
34 |
|
35 |
🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
|
36 |
|
37 |
-
🔥🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://
|
38 |
|
39 |
-
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://
|
40 |
|
41 |
<br>
|
42 |
|
@@ -209,7 +209,7 @@ if __name__ == "__main__":
|
|
209 |
|
210 |
## 模型简介
|
211 |
|
212 |
-
CodeFuse-DeepSeek-33B-4bits是代码大模型[CodeFuse-DeepSeek-33B](https://
|
213 |
|
214 |
经过4-bits量化后,CodeFuse-DeepSeek-33B-4bits可在单张A10 (24GB显存)或者RTX 4090(24G显存)上加载。量化后,CodeFuse-DeepSeek-33B-4bits仍取得HumanEval pass@1 78.05%。
|
215 |
<br>
|
@@ -228,9 +228,9 @@ CodeFuse-DeepSeek-33B-4bits是代码大模型[CodeFuse-DeepSeek-33B](https://mod
|
|
228 |
|
229 |
🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
|
230 |
|
231 |
-
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://
|
232 |
|
233 |
-
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://
|
234 |
|
235 |
<br>
|
236 |
|
|
|
14 |
|
15 |
## Model Description
|
16 |
|
17 |
+
CodeFuse-DeepSeek-33B-4bits is the 4-bit quantized version of [CodeFuse-DeepSeek-33B](https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B) which is a 33B Code-LLM finetuned by QLoRA on multiple code-related tasks on the base model DeepSeek-Coder-33B.
|
18 |
|
19 |
After undergoing 4-bit quantization, the CodeFuse-DeepSeek-33B-4bits model can be loaded on either a single A10 (24GB VRAM) or an RTX 4090 (24GB VRAM). Moreover, the quantized model still achives an impressive accuracy of 78.05% on the Humaneval pass@1 metric.
|
20 |
|
|
|
34 |
|
35 |
🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
|
36 |
|
37 |
+
🔥🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits) of [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary). Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
|
38 |
|
39 |
+
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits) has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
|
40 |
|
41 |
<br>
|
42 |
|
|
|
209 |
|
210 |
## 模型简介
|
211 |
|
212 |
+
CodeFuse-DeepSeek-33B-4bits是代码大模型[CodeFuse-DeepSeek-33B](https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B)的4-bits量化版本,后者基于底座模型DeepSeek-Coder-33B使用MFTCoder框架在多个代码相关任务上微调得到。
|
213 |
|
214 |
经过4-bits量化后,CodeFuse-DeepSeek-33B-4bits可在单张A10 (24GB显存)或者RTX 4090(24G显存)上加载。量化后,CodeFuse-DeepSeek-33B-4bits仍取得HumanEval pass@1 78.05%。
|
215 |
<br>
|
|
|
228 |
|
229 |
🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
|
230 |
|
231 |
+
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
|
232 |
|
233 |
+
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。
|
234 |
|
235 |
<br>
|
236 |
|