codefuse-admin commited on
Commit
7825fb5
·
verified ·
1 Parent(s): 8661fb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -14,7 +14,7 @@ tasks:
14
 
15
  ## Model Description
16
 
17
- CodeFuse-DeepSeek-33B-4bits is the 4-bit quantized version of [CodeFuse-DeepSeek-33B](https://modelscope.cn/models/codefuse-ai/CodeFuse-DeepSeek-33B/summary) which is a 33B Code-LLM finetuned by QLoRA on multiple code-related tasks on the base model DeepSeek-Coder-33B.
18
 
19
  After undergoing 4-bit quantization, the CodeFuse-DeepSeek-33B-4bits model can be loaded on either a single A10 (24GB VRAM) or an RTX 4090 (24GB VRAM). Moreover, the quantized model still achives an impressive accuracy of 78.05% on the Humaneval pass@1 metric.
20
 
@@ -34,9 +34,9 @@ After undergoing 4-bit quantization, the CodeFuse-DeepSeek-33B-4bits model can b
34
 
35
  🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
36
 
37
- 🔥🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary) of [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary). Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
38
 
39
- 🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary) has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
40
 
41
  <br>
42
 
@@ -209,7 +209,7 @@ if __name__ == "__main__":
209
 
210
  ## 模型简介
211
 
212
- CodeFuse-DeepSeek-33B-4bits是代码大模型[CodeFuse-DeepSeek-33B](https://modelscope.cn/models/codefuse-ai/CodeFuse-DeepSeek-33B/summary)的4-bits量化版本,后者基于底座模型DeepSeek-Coder-33B使用MFTCoder框架在多个代码相关任务上微调得到。
213
 
214
  经过4-bits量化后,CodeFuse-DeepSeek-33B-4bits可在单张A10 (24GB显存)或者RTX 4090(24G显存)上加载。量化后,CodeFuse-DeepSeek-33B-4bits仍取得HumanEval pass@1 78.05%。
215
  <br>
@@ -228,9 +228,9 @@ CodeFuse-DeepSeek-33B-4bits是代码大模型[CodeFuse-DeepSeek-33B](https://mod
228
 
229
  🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
230
 
231
- 🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
232
 
233
- 🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。
234
 
235
  <br>
236
 
 
14
 
15
  ## Model Description
16
 
17
+ CodeFuse-DeepSeek-33B-4bits is the 4-bit quantized version of [CodeFuse-DeepSeek-33B](https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B) which is a 33B Code-LLM finetuned by QLoRA on multiple code-related tasks on the base model DeepSeek-Coder-33B.
18
 
19
  After undergoing 4-bit quantization, the CodeFuse-DeepSeek-33B-4bits model can be loaded on either a single A10 (24GB VRAM) or an RTX 4090 (24GB VRAM). Moreover, the quantized model still achives an impressive accuracy of 78.05% on the Humaneval pass@1 metric.
20
 
 
34
 
35
  🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
36
 
37
+ 🔥🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits) of [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary). Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
38
 
39
+ 🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits) has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
40
 
41
  <br>
42
 
 
209
 
210
  ## 模型简介
211
 
212
+ CodeFuse-DeepSeek-33B-4bits是代码大模型[CodeFuse-DeepSeek-33B](https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B)的4-bits量化版本,后者基于底座模型DeepSeek-Coder-33B使用MFTCoder框架在多个代码相关任务上微调得到。
213
 
214
  经过4-bits量化后,CodeFuse-DeepSeek-33B-4bits可在单张A10 (24GB显存)或者RTX 4090(24G显存)上加载。量化后,CodeFuse-DeepSeek-33B-4bits仍取得HumanEval pass@1 78.05%。
215
  <br>
 
228
 
229
  🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
230
 
231
+ 🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
232
 
233
+ 🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。
234
 
235
  <br>
236