File size: 16,896 Bytes
804234c
596e8ff
 
d0e33ba
596e8ff
 
804234c
d0e33ba
 
596e8ff
 
 
 
 
 
 
7825fb5
d0e33ba
2242676
596e8ff
 
 
 
 
 
 
d0e33ba
596e8ff
 
 
 
 
 
 
 
 
a3879ec
596e8ff
2242676
596e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415d42
596e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27888a8
596e8ff
6970d18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413807
6970d18
 
eaa10ca
6970d18
 
596e8ff
 
 
 
 
 
 
 
d0e33ba
596e8ff
 
 
 
 
 
a3879ec
596e8ff
d0e33ba
596e8ff
 
 
 
 
 
 
d0e33ba
596e8ff
 
8ab8766
596e8ff
 
 
 
 
 
 
 
 
d0e33ba
596e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7825fb5
8661fb7
596e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7825fb5
596e8ff
7825fb5
596e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e750372
 
1413807
e750372
 
 
 
 
 
 
 
 
 
 
 
 
1413807
 
eaa10ca
e750372
596e8ff
 
 
 
 
 
d0e33ba
596e8ff
 
 
 
 
 
d0e33ba
596e8ff
d0e33ba
596e8ff
 
 
 
 
 
 
d0e33ba
596e8ff
 
8ab8766
596e8ff
 
 
 
 
 
 
 
 
a3879ec
596e8ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
---
frameworks:
- Pytorch
license: other
tasks:
- text-generation
---
# Model Card for CodeFuse-DeepSeek-33B-4bits
![LOGO](LOGO.jpg)

[[中文]](#chinese)    [[English]](#english)

<a id="english"></a>

## Model Description

CodeFuse-DeepSeek-33B-4bits is the 4-bit quantized version of [CodeFuse-DeepSeek-33B](https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B) which is a 33B Code-LLM finetuned by QLoRA on multiple code-related tasks on the base model DeepSeek-Coder-33B. 

After undergoing 4-bit quantization, the CodeFuse-DeepSeek-33B-4bits model can be loaded on either a single A10 (24GB VRAM) or an RTX 4090 (24GB VRAM). Moreover, the quantized model still achieves an impressive accuracy of 78.05% on the HumanEval pass@1 metric.

<br>

## News and Updates

🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B-4bits has been released. Despite the quantization process, the model still achieves a remarkable 78.05% accuracy (greedy decoding) on the HumanEval pass@1 metric.

🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B has been released, achieving a pass@1 (greedy decoding) score of 78.65% on HumanEval.

  🔥🔥 2023-11-10 CodeFuse-CodeGeeX2-6B has been released, achieving a pass@1 (greedy decoding) score of 45.12% on HumanEval, which is a 9.22% increase compared to CodeGeeX2 35.9%.

  🔥🔥 2023-10-20 CodeFuse-QWen-14B technical documentation has been released. For those interested, please refer to the CodeFuse article on our WeChat official account via the provided link.(https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw)

  🔥🔥 2023-10-16 CodeFuse-QWen-14B has been released, achieving a pass@1 (greedy decoding) score of 48.78% on HumanEval, which is a 16% increase compared to Qwen-14b's 32.3%.

  🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.

🔥🔥🔥 2023-09-26 We are pleased to announce the release of the [4-bit quantized version](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits) of [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B). Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.

🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits) has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for open-sourced LLMs at present.

<br>

## Code Community

**Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**)

+ If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨

+ If you wish to deploy the model yourself, you can visit ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨

+ If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨

<br>

## Performance


| Model                       | HumanEval(pass@1) |  Date   |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-CodeLlama-34B**  |     **74.4%**      | 2023.9  |
|**CodeFuse-CodeLlama-34B-4bits** |     **73.8%**  |  2023.9 |
| WizardCoder-Python-34B-V1.0 |       73.2%       | 2023.8  |
| GPT-4(zero-shot)            |       67.0%       | 2023.3  |
| PanGu-Coder2 15B            |       61.6%       | 2023.8  |
| CodeLlama-34b-Python        |       53.7%       | 2023.8  |
| CodeLlama-34b               |       48.8%       | 2023.8  |
| GPT-3.5(zero-shot)          |       48.1%       | 2022.11 |
| OctoCoder                   |       46.2%       | 2023.8  |
| StarCoder-15B               |       33.6%       | 2023.5  |
| Qwen-14b                    |       32.3%       | 2023.10 |
| **CodeFuse-StarCoder-15B**  |     **54.9%**     | 2023.9  |
| **CodeFuse-QWen-14B**       |     **48.78%**    | 2023.10 |
| **CodeFuse-CodeGeeX2-6B**   |     **45.12%**    | 2023.11 |
| **CodeFuse-DeepSeek-33B**   |     **78.65%**    | 2024.01 |
| **CodeFuse-DeepSeek-33B-4bits** | **78.05%**    | 2024.01 |


<br>

## Requirements

* python>=3.8 
* pytorch>=2.0.0
* transformers>=4.33.2
* Sentencepiece
* auto_gptq
* CUDA 11.4
  <br>

##  Inference String Format

The inference string is a concatenated string formed by combining conversation data (system, human and bot contents) in the training data format.  It is used as input during the inference process.
Here are examples of prompts used to request the model:

**Multi-Round with System Prompt:**
```python
"""
<s>system
System instruction
<s>human
Human 1st round input
<s>bot
Bot 1st round output<|end▁of▁sentence|>
<s>human
Human 2nd round input
<s>bot
Bot 2nd round output<|end▁of▁sentence|>
...
...
...
<s>human
Human nth round input
<s>bot
"""
```

**Single-Round without System Prompt:**
```python
"""
<s>human
User prompt...
<s>bot

"""
```

In this format, the system section is optional and the conversation can be either single-turn or multi-turn. When applying inference, you always make your input string end with "\<s\>bot\n" to ask the model generating answers.

For example, the format used to infer HumanEval is like the following:

```python
<s>human
# language: Python
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
    """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
    separate those group into separate strings and return the list of those.
    Separate groups are balanced (each open brace is properly closed) and not nested within each other
    Ignore any spaces in the input string.
    >>> separate_paren_groups('( ) (( )) (( )( ))')
    ['()', '(())', '(()())']
    """
<s>bot

```

Specifically, we also add the Programming Language Tag (e.g. "```# language: Python```" for Python) used by CodeGeex models.



## Quickstart


```python
import os
import torch
import time
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM

os.environ["TOKENIZERS_PARALLELISM"] = "false"

def load_model_tokenizer(model_path):
    """
    Load model and tokenizer based on the given model name or local path of the downloaded model.
    """
    tokenizer = AutoTokenizer.from_pretrained("codefuse-ai/CodeFuse-DeepSeek-33B-4bits", 
                                              trust_remote_code=True, 
                                              use_fast=False,
                                              lagecy=False)
    tokenizer.padding_side = "left"
    tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<|end▁of▁sentence|>")
    tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<|end▁of▁sentence|>")

    model = AutoGPTQForCausalLM.from_quantized("codefuse-ai/CodeFuse-DeepSeek-33B-4bits", 
                                                inject_fused_attention=False,
                                                inject_fused_mlp=False,
                                                use_safetensors=True,
                                                use_cuda_fp16=True,
                                                disable_exllama=False,
                                                device_map='auto'   # Support multi-gpus
                                              )
    return model, tokenizer


def inference(model, tokenizer, prompt):
    """
    Uset the given model and tokenizer to generate an answer for the specified prompt.
    """
    st = time.time()
    prompt = prompt if prompt.endswith('\n') else f'{prompt}\n'
    inputs =  f"<s>human\n{prompt}<s>bot\n"

    input_ids = tokenizer.encode(inputs, 
                                  return_tensors="pt", 
                                  padding=True, 
                                  add_special_tokens=False).to("cuda")
    with torch.no_grad():
        generated_ids = model.generate(
            input_ids=input_ids,
            top_p=0.95,
            temperature=0.1,
            do_sample=True,
            max_new_tokens=512,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id              
        )
    print(f'generated tokens num is {len(generated_ids[0][input_ids.size(1):])}')
    outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) 
    print(f'generate text is {outputs[0][len(inputs): ]}')
    latency = time.time() - st
    print('latency is {} seconds'.format(latency))

    
if __name__ == "__main__":
    prompt = 'Please write a QuickSort program in Python'

    model, tokenizer = load_model_tokenizer(model_dir)
    inference(model, tokenizer, prompt)
```








<a id="chinese"></a>

## 模型简介

CodeFuse-DeepSeek-33B-4bits是代码大模型[CodeFuse-DeepSeek-33B](https://huggingface.co/codefuse-ai/CodeFuse-DeepSeek-33B)的4-bits量化版本,后者基于底座模型DeepSeek-Coder-33B使用MFTCoder框架在多个代码相关任务上微调得到。

经过4-bits量化后,CodeFuse-DeepSeek-33B-4bits可在单张A10 (24GB显存)或者RTX 4090(24G显存)上加载。量化后,CodeFuse-DeepSeek-33B-4bits仍取得HumanEval pass@1 78.05%。
<br>

## 新闻

🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B-4bits模型发布。量化后模型在HumanEval pass@1仍取得78.05% (贪婪解码)。

🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B模型发布,模型在HumanEval pass@1指标为78.65% (贪婪解码)。

  🔥🔥 2023-11-10 开源了CodeFuse-CodeGeeX2-6B模型,在HumanEval pass@1(greedy decoding)上可以达到48.12%, 比CodeGeeX2提高了9.22%的代码能力(HumanEval)

  🔥🔥 2023-10-20 公布了CodeFuse-QWen-14B技术文档,感兴趣详见微信公众号CodeFuse文章:https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw

  🔥🔥 2023-10-16开源了CodeFuse-QWen-14B模型,在HumanEval pass@1(greedy decoding)上可以达到48.78%, 比Qwen-14b提高了16%的代码能力(HumanEval)

  🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)

🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B-4bits)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。

🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://huggingface.co/codefuse-ai/CodeFuse-CodeLlama-34B)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。

<br>

## 代码社区
**大本营**: 🏡 https://github.com/codefuse-ai (**请支持我们的项目Star🌟 + Fork🚀 + Watch👀**+ 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨

+ 如果您想自己部署该模型,可以访问 ✨[FasterTransformer4CodeFuse](https://github.com/codefuse-ai/FasterTransformer4CodeFuse)✨✨

+ 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨

<br>


## 评测表现

### 代码


| 模型                          | HumanEval(pass@1) |   日期    |
|:----------------------------|:-----------------:|:-------:|
| **CodeFuse-CodeLlama-34B**  |     **74.4%**      | 2023.9  |
|**CodeFuse-CodeLlama-34B-4bits** |     **73.8%**  |  2023.9 |
| WizardCoder-Python-34B-V1.0 |       73.2%       | 2023.8  |
| GPT-4(zero-shot)            |       67.0%       | 2023.3  |
| PanGu-Coder2 15B            |       61.6%       | 2023.8  |
| CodeLlama-34b-Python        |       53.7%       | 2023.8  |
| CodeLlama-34b               |       48.8%       | 2023.8  |
| GPT-3.5(zero-shot)          |       48.1%       | 2022.11 |
| OctoCoder                   |       46.2%       | 2023.8  |
| StarCoder-15B               |       33.6%       | 2023.5  |
| Qwen-14b               |       32.3%       | 2023.10  |
| **CodeFuse-StarCoder-15B**  |     **54.9%**     | 2023.9  |
| **CodeFuse-QWen-14B**       |     **48.78%**     | 2023.8 |
| **CodeFuse-CodeGeeX2-6B**   |     **45.12%**    | 2023.11 |
| **CodeFuse-DeepSeek-33B**.  |     **78.65%**    | 2024.01 |
| **CodeFuse-DeepSeek-33B-4bits** | **78.05%**    | 2024.01 |


## Requirements

* python>=3.8 
* pytorch>=2.0.0
* transformers>=4.33.2
* Sentencepiece
* auto_gptq
* CUDA 11.4
<br>

## 推理数据格式

推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式. 下面分别是带系统提示的多轮会话格式和不带系统提示的单轮会话格式:

**带System提示的多轮会话格式:**
```python
"""
<s>system
System instruction
<s>human
Human 1st round input
<s>bot
Bot 1st round output<|end▁of▁sentence|>
<s>human
Human 2nd round input
<s>bot
Bot 2nd round output<|end▁of▁sentence|>
...
...
...
<s>human
Human nth round input
<s>bot
"""
```

**不带System提示的单轮会话格式:**
```python
"""
<s>human
User prompt...
<s>bot

"""
```

在这个格式中,System提示是可选的(按需设定),支持单轮会话也支持多轮会话。推理时,请确保拼接的prompt字符串以"\<s\>bot\n"结尾,引导模型生成回答。

例如,推理HumanEval数据时使用的格式如下所示:

```python
<s>human
# language: Python
from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
    """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
    separate those group into separate strings and return the list of those.
    Separate groups are balanced (each open brace is properly closed) and not nested within each other
    Ignore any spaces in the input string.
    >>> separate_paren_groups('( ) (( )) (( )( ))')
    ['()', '(())', '(()())']
    """
<s>bot

```

特别地,我们也使用了CodeGeeX系列模型采用的编程语言区分标签(例如,对于Python语言,我们会使用"```# language: Python```")。

## 快速使用

```python
import os
import torch
import time
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM

os.environ["TOKENIZERS_PARALLELISM"] = "false"

def load_model_tokenizer(model_path):
    """
    Load model and tokenizer based on the given model name or local path of the downloaded model.
    """
    tokenizer = AutoTokenizer.from_pretrained("codefuse-ai/CodeFuse-DeepSeek-33B-4bits", 
                                              trust_remote_code=True, 
                                              use_fast=False,
                                              lagecy=False)
    tokenizer.padding_side = "left"
    tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<|end▁of▁sentence|>")
    tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("<|end▁of▁sentence|>")

    model = AutoGPTQForCausalLM.from_quantized("codefuse-ai/CodeFuse-DeepSeek-33B-4bits", 
                                                inject_fused_attention=False,
                                                inject_fused_mlp=False,
                                                use_safetensors=True,
                                                use_cuda_fp16=True,
                                                disable_exllama=False,
                                                device_map='auto'   # Support multi-gpus
                                              )
    return model, tokenizer


def inference(model, tokenizer, prompt):
    """
    Uset the given model and tokenizer to generate an answer for the specified prompt.
    """
    st = time.time()
    prompt = prompt if prompt.endswith('\n') else f'{prompt}\n'
    inputs =  f"<s>human\n{prompt}<s>bot\n"

    input_ids = tokenizer.encode(inputs, 
                                  return_tensors="pt", 
                                  padding=True, 
                                  add_special_tokens=False).to("cuda")
    with torch.no_grad():
        generated_ids = model.generate(
            input_ids=input_ids,
            top_p=0.95,
            temperature=0.1,
            do_sample=True,
            max_new_tokens=512,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id              
        )
    print(f'generated tokens num is {len(generated_ids[0][input_ids.size(1):])}')
    outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) 
    print(f'generate text is {outputs[0][len(inputs): ]}')
    latency = time.time() - st
    print('latency is {} seconds'.format(latency))

    
if __name__ == "__main__":

    prompt = 'Please write a QuickSort program in Python'

    model, tokenizer = load_model_tokenizer(model_dir)
    inference(model, tokenizer, prompt)
```