Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 286.36 +/- 16.12
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f97af411560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f97af4115f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f97af411680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f97af411710>", "_build": "<function ActorCriticPolicy._build at 0x7f97af4117a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f97af411830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f97af4118c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f97af411950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f97af4119e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97af411a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f97af411b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f97af45d810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651844699.769172, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOihbx73pG6TCwqPY8gkDOKP7U6/ieBswAAAAAAAIA/8u6DvmM0dj8KT769uGMBv/3w6L4yq0g9AAAAAAAAAABNpwC9cVEBu8W2a7sjJpM8g0wTPBpofr0AAIA/AACAP40ooL2cbCo+HujuPnqay74QO2o+gPyWPgAAAAAAAAAAmrg2Pkbe7T5UoLS+7FP0vitdSD34gIS+AAAAAAAAAAC6uxG+Y8X0PhjLOD7qH/C+yYINvtqECD4AAAAAAAAAADPzljmOF6e8k8XBO0XTAj12gMi7GZuuuwAAgD8AAIA/MyUxPC21tD9gnxw+NWSYvbkR6Lhb2787AAAAAAAAAABN4ii97JiEu3s8bTwFopA8wNTBvJBFdz0AAIA/AACAP2ZGrjs4n5+7EAhXu8GVrTznMPE8lX+SvQAAgD8AAIA/5k+VPZ6aLz96W3W7HmYNvyaKxj3WJA69AAAAAAAAAAAzZr28tokCvN2OZ7zwTZc8KhdYPSrefL0AAIA/AACAPyZanT2kJUC72ouXvhR7Ib4xz1q8C9WOPwAAgD8AAAAAzbIpveFwubpyIDazyYwzMHglhznwN84zAACAPwAAgD8qbFe+11WCPw6vB723Cge/jkPCvlRirz0AAAAAAAAAAM3EADyRafQ+q1DxvUlhAL8W3HG8lsexvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ71vfC3ZcECUhpRSlIwBbJRLyowBdJRHQLlQj2ycCo11fZQoaAZoCWgPQwg/AKlNXP5xQJSGlFKUaBVLzmgWR0C5ULMqaw2VdX2UKGgGaAloD0MI73IR3wlTcECUhpRSlGgVS8RoFkdAuVC+r/82rHV9lChoBmgJaA9DCNdoOdBDL3NAlIaUUpRoFUu/aBZHQLlQ3KwpvxZ1fZQoaAZoCWgPQwimDYelAfhnQJSGlFKUaBVN6ANoFkdAuVD4vrWy1XV9lChoBmgJaA9DCE7TZwdcCXJAlIaUUpRoFUvXaBZHQLlRA/bTMJR1fZQoaAZoCWgPQwjw3Hu4pE1xQJSGlFKUaBVL1GgWR0C5UUDIeYD1dX2UKGgGaAloD0MIEqJ8QUu1cUCUhpRSlGgVS+VoFkdAuVFC+PBBRnV9lChoBmgJaA9DCPaZsz4la3NAlIaUUpRoFUvpaBZHQLlRWiIcinp1fZQoaAZoCWgPQwhj7e9sT8xzQJSGlFKUaBVLxWgWR0C5UXML0BfbdX2UKGgGaAloD0MIlbiOccX0b0CUhpRSlGgVS8toFkdAuVGOqjrRjXV9lChoBmgJaA9DCGh3SDFA8GdAlIaUUpRoFU3oA2gWR0C5UZTG1hLHdX2UKGgGaAloD0MIJ0pCIi1ocECUhpRSlGgVS7FoFkdAuVGvhegL7XV9lChoBmgJaA9DCHOiXYXUQXFAlIaUUpRoFUvGaBZHQLlR6LJSzgN1fZQoaAZoCWgPQwh3Loz0InJyQJSGlFKUaBVLv2gWR0C5UfD3h4t6dX2UKGgGaAloD0MIpMaEmMsxcECUhpRSlGgVS8poFkdAuVIUxEfDDXV9lChoBmgJaA9DCAZLdQEveXNAlIaUUpRoFUvZaBZHQLlSLg2qDK51fZQoaAZoCWgPQwgudvus8lJyQJSGlFKUaBVLr2gWR0C5UivtIClrdX2UKGgGaAloD0MInOCbps/3cECUhpRSlGgVS85oFkdAuVJAtz0Yj3V9lChoBmgJaA9DCJijx++t53JAlIaUUpRoFUvKaBZHQLlSQ0yxiXp1fZQoaAZoCWgPQwiaIyu/DJpyQJSGlFKUaBVLu2gWR0C5UmRZlnRLdX2UKGgGaAloD0MIJA7ZQHoZc0CUhpRSlGgVS/FoFkdAuVrVCw8nu3V9lChoBmgJaA9DCHhjQWGQIXJAlIaUUpRoFUvKaBZHQLla4ZGrjo91fZQoaAZoCWgPQwhGtYgo5oRzQJSGlFKUaBVL4mgWR0C5Wvc580DVdX2UKGgGaAloD0MIFyzVBXxkckCUhpRSlGgVS7hoFkdAuVr29PDYRXV9lChoBmgJaA9DCGlSCrr9tXFAlIaUUpRoFUvKaBZHQLla+bT+ee51fZQoaAZoCWgPQwiwBFJiFydxQJSGlFKUaBVLvmgWR0C5WvwE2YOUdX2UKGgGaAloD0MIg1K0cm/Cc0CUhpRSlGgVS+toFkdAuVsHP9kz43V9lChoBmgJaA9DCFTjpZsEG3JAlIaUUpRoFUu2aBZHQLlbDE87p3Z1fZQoaAZoCWgPQwiOQLyuXwhwQJSGlFKUaBVLv2gWR0C5W0zTrmhedX2UKGgGaAloD0MIaw97oUA5ckCUhpRSlGgVS8toFkdAuVtqWPcSG3V9lChoBmgJaA9DCJUtknbjJnJAlIaUUpRoFUvMaBZHQLlbjxkd3jd1fZQoaAZoCWgPQwioUrMHmjByQJSGlFKUaBVLxmgWR0C5W7IqoZQ6dX2UKGgGaAloD0MI9pZyvhjfcUCUhpRSlGgVS9NoFkdAuVu35wfhdnV9lChoBmgJaA9DCJ2BkZd1BXFAlIaUUpRoFUvKaBZHQLlbtt0FKTV1fZQoaAZoCWgPQwhj7ISX4FByQJSGlFKUaBVL2mgWR0C5W8CrDIikdX2UKGgGaAloD0MIG55eKQvTckCUhpRSlGgVS9toFkdAuVv1u4wyqXV9lChoBmgJaA9DCJZcxeJ3M3JAlIaUUpRoFUu0aBZHQLlcEjVQQ+V1fZQoaAZoCWgPQwg17WKaqX1wQJSGlFKUaBVLt2gWR0C5XCokZ75VdX2UKGgGaAloD0MIXfxtTxAtcUCUhpRSlGgVS8xoFkdAuVwwPRRdhXV9lChoBmgJaA9DCAQBMnTspXBAlIaUUpRoFUu5aBZHQLlcM987ZFp1fZQoaAZoCWgPQwhEaW/wBdtxQJSGlFKUaBVL0mgWR0C5XFt4JNTMdX2UKGgGaAloD0MIkC42rRSCcECUhpRSlGgVS8toFkdAuVxgWfseGXV9lChoBmgJaA9DCL+CNGPRq3JAlIaUUpRoFUvOaBZHQLlcbScLBsR1fZQoaAZoCWgPQwg1ejVAaZxzQJSGlFKUaBVL3GgWR0C5XHIPTXrddX2UKGgGaAloD0MIEFoPXyZZckCUhpRSlGgVS89oFkdAuVy1m+TNdXV9lChoBmgJaA9DCNh+MsYHxW5AlIaUUpRoFUvKaBZHQLlc8LeyiVV1fZQoaAZoCWgPQwiR1ELJ5GlxQJSGlFKUaBVLy2gWR0C5XRSv1UVBdX2UKGgGaAloD0MIradWXx19c0CUhpRSlGgVS8toFkdAuV0bej2zwHV9lChoBmgJaA9DCGAeMuUDq3FAlIaUUpRoFUvRaBZHQLldJky1uzh1fZQoaAZoCWgPQwirXn6nCZFzQJSGlFKUaBVL/WgWR0C5XSr/CIk7dX2UKGgGaAloD0MIN1MhHkkscUCUhpRSlGgVS91oFkdAuV1F5/smfHV9lChoBmgJaA9DCMk9Xd1xbXFAlIaUUpRoFUu0aBZHQLldVVH4Glh1fZQoaAZoCWgPQwhBgAwdu5RvQJSGlFKUaBVLzmgWR0C5XWUFr2xqdX2UKGgGaAloD0MI0Jfe/hx2cECUhpRSlGgVS8JoFkdAuV2H06HTJHV9lChoBmgJaA9DCFThz/Dme3NAlIaUUpRoFUvDaBZHQLldjnw5NoJ1fZQoaAZoCWgPQwh/3H75ZHtwQJSGlFKUaBVLs2gWR0C5XayJ0nw5dX2UKGgGaAloD0MIyeNp+cHwckCUhpRSlGgVS8loFkdAuV3IcrAgxXV9lChoBmgJaA9DCB3KUBVT4HBAlIaUUpRoFUvCaBZHQLldy2aUiY91fZQoaAZoCWgPQwjcSxqjdbJxQJSGlFKUaBVL0GgWR0C5XdDMJQchdX2UKGgGaAloD0MII8DpXbx8c0CUhpRSlGgVS/BoFkdAuV3gcfeUIXV9lChoBmgJaA9DCCXLSSj9P3NAlIaUUpRoFUvPaBZHQLleImbLEDR1fZQoaAZoCWgPQwh2wHXFzN5yQJSGlFKUaBVLt2gWR0C5Xlhu0kWzdX2UKGgGaAloD0MIfJ3Ul+XVc0CUhpRSlGgVS7JoFkdAuV5d8zAN5XV9lChoBmgJaA9DCAOWXMXiLnJAlIaUUpRoFUvGaBZHQLlebdbgTAZ1fZQoaAZoCWgPQwjNO07R0S9xQJSGlFKUaBVL2mgWR0C5XnBF3IMjdX2UKGgGaAloD0MIPKJCdTO1cUCUhpRSlGgVS9poFkdAuV6h79hqkHV9lChoBmgJaA9DCLQB2IBI0XJAlIaUUpRoFUvLaBZHQLleuDRMN+d1fZQoaAZoCWgPQwi3Yn/ZPZlvQJSGlFKUaBVL0mgWR0C5XrS+6Ae8dX2UKGgGaAloD0MId9uF5jo2c0CUhpRSlGgVS8poFkdAuV7GEYfnwHV9lChoBmgJaA9DCBmuDoB4hnJAlIaUUpRoFUvGaBZHQLle5HVwxWV1fZQoaAZoCWgPQwjONczQ+HNyQJSGlFKUaBVLwWgWR0C5XvmYWtU5dX2UKGgGaAloD0MI46jcRG3DckCUhpRSlGgVS7loFkdAuV8OlSCOFXV9lChoBmgJaA9DCBrAWyBBXHNAlIaUUpRoFUvnaBZHQLlfFm16Vt51fZQoaAZoCWgPQwh7TQ8KirlyQJSGlFKUaBVLxGgWR0C5XxnKr7wbdX2UKGgGaAloD0MIweEFESnGcUCUhpRSlGgVS8toFkdAuV8njNpudnV9lChoBmgJaA9DCOPfZ1z4B3JAlIaUUpRoFUvXaBZHQLlfUKc/dIp1fZQoaAZoCWgPQwhW0/VE12dLQJSGlFKUaBVLgmgWR0C5X5EdvKlpdX2UKGgGaAloD0MI9BjlmZftckCUhpRSlGgVS9NoFkdAuV+RJnQIEHV9lChoBmgJaA9DCL7e/fEeeXFAlIaUUpRoFUu4aBZHQLlfraWX1J11fZQoaAZoCWgPQwjb3QN0H51yQJSGlFKUaBVLy2gWR0C5X7guM+/ydX2UKGgGaAloD0MINPeQ8D0TdECUhpRSlGgVS8ZoFkdAuV+0kD6nBXV9lChoBmgJaA9DCC2xMhq5E3NAlIaUUpRoFUvDaBZHQLlfvkLhJiB1fZQoaAZoCWgPQwi6FFeVPQBzQJSGlFKUaBVLw2gWR0C5X+y2x6fKdX2UKGgGaAloD0MIo5BkVi88ckCUhpRSlGgVS75oFkdAuV/5SflIVnV9lChoBmgJaA9DCJc3h2v123BAlIaUUpRoFUvDaBZHQLlgDn7Hhjx1fZQoaAZoCWgPQwieQUP/BIZvQJSGlFKUaBVLymgWR0C5YD0ahpQDdX2UKGgGaAloD0MIXANbJdiPcUCUhpRSlGgVS8JoFkdAuWBcj4YaYXV9lChoBmgJaA9DCLCryVOWfHJAlIaUUpRoFUvOaBZHQLlgXK0D2al1fZQoaAZoCWgPQwiiz0cZMR9xQJSGlFKUaBVLvmgWR0C5YF4pH7P6dX2UKGgGaAloD0MINL4vLlVTb0CUhpRSlGgVS9NoFkdAuWCIyN4qw3V9lChoBmgJaA9DCHQkl/+Q529AlIaUUpRoFUvOaBZHQLlgjrwe/6B1fZQoaAZoCWgPQwi4PNaMzFRzQJSGlFKUaBVL12gWR0C5YMawD/2kdX2UKGgGaAloD0MI8YCyKVfTcUCUhpRSlGgVS71oFkdAuWDaNIbwSnV9lChoBmgJaA9DCP4qwHcb1G5AlIaUUpRoFUvOaBZHQLlg+Suhbnp1fZQoaAZoCWgPQwgO9buwNXhyQJSGlFKUaBVLxWgWR0C5YQcnVoYfdX2UKGgGaAloD0MIdvwXCEJ4cECUhpRSlGgVS8FoFkdAuWEG+ajN6nV9lChoBmgJaA9DCC4aMh7lBXJAlIaUUpRoFUu/aBZHQLlhDoLofSx1fZQoaAZoCWgPQwhmv+50p0tzQJSGlFKUaBVLz2gWR0C5YSL2pQ1rdX2UKGgGaAloD0MIv/T25yJgckCUhpRSlGgVS99oFkdAuWF4fhddFHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1348, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43f3b1dabef8a1d026221242ada33e2b0b9b3ab66194dbc4f0ce26c27978f523
|
3 |
+
size 143987
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f97af411560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f97af4115f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f97af411680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f97af411710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f97af4117a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f97af411830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f97af4118c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f97af411950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f97af4119e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97af411a70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f97af411b00>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f97af45d810>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 5013504,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651844699.769172,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOihbx73pG6TCwqPY8gkDOKP7U6/ieBswAAAAAAAIA/8u6DvmM0dj8KT769uGMBv/3w6L4yq0g9AAAAAAAAAABNpwC9cVEBu8W2a7sjJpM8g0wTPBpofr0AAIA/AACAP40ooL2cbCo+HujuPnqay74QO2o+gPyWPgAAAAAAAAAAmrg2Pkbe7T5UoLS+7FP0vitdSD34gIS+AAAAAAAAAAC6uxG+Y8X0PhjLOD7qH/C+yYINvtqECD4AAAAAAAAAADPzljmOF6e8k8XBO0XTAj12gMi7GZuuuwAAgD8AAIA/MyUxPC21tD9gnxw+NWSYvbkR6Lhb2787AAAAAAAAAABN4ii97JiEu3s8bTwFopA8wNTBvJBFdz0AAIA/AACAP2ZGrjs4n5+7EAhXu8GVrTznMPE8lX+SvQAAgD8AAIA/5k+VPZ6aLz96W3W7HmYNvyaKxj3WJA69AAAAAAAAAAAzZr28tokCvN2OZ7zwTZc8KhdYPSrefL0AAIA/AACAPyZanT2kJUC72ouXvhR7Ib4xz1q8C9WOPwAAgD8AAAAAzbIpveFwubpyIDazyYwzMHglhznwN84zAACAPwAAgD8qbFe+11WCPw6vB723Cge/jkPCvlRirz0AAAAAAAAAAM3EADyRafQ+q1DxvUlhAL8W3HG8lsexvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ71vfC3ZcECUhpRSlIwBbJRLyowBdJRHQLlQj2ycCo11fZQoaAZoCWgPQwg/AKlNXP5xQJSGlFKUaBVLzmgWR0C5ULMqaw2VdX2UKGgGaAloD0MI73IR3wlTcECUhpRSlGgVS8RoFkdAuVC+r/82rHV9lChoBmgJaA9DCNdoOdBDL3NAlIaUUpRoFUu/aBZHQLlQ3KwpvxZ1fZQoaAZoCWgPQwimDYelAfhnQJSGlFKUaBVN6ANoFkdAuVD4vrWy1XV9lChoBmgJaA9DCE7TZwdcCXJAlIaUUpRoFUvXaBZHQLlRA/bTMJR1fZQoaAZoCWgPQwjw3Hu4pE1xQJSGlFKUaBVL1GgWR0C5UUDIeYD1dX2UKGgGaAloD0MIEqJ8QUu1cUCUhpRSlGgVS+VoFkdAuVFC+PBBRnV9lChoBmgJaA9DCPaZsz4la3NAlIaUUpRoFUvpaBZHQLlRWiIcinp1fZQoaAZoCWgPQwhj7e9sT8xzQJSGlFKUaBVLxWgWR0C5UXML0BfbdX2UKGgGaAloD0MIlbiOccX0b0CUhpRSlGgVS8toFkdAuVGOqjrRjXV9lChoBmgJaA9DCGh3SDFA8GdAlIaUUpRoFU3oA2gWR0C5UZTG1hLHdX2UKGgGaAloD0MIJ0pCIi1ocECUhpRSlGgVS7FoFkdAuVGvhegL7XV9lChoBmgJaA9DCHOiXYXUQXFAlIaUUpRoFUvGaBZHQLlR6LJSzgN1fZQoaAZoCWgPQwh3Loz0InJyQJSGlFKUaBVLv2gWR0C5UfD3h4t6dX2UKGgGaAloD0MIpMaEmMsxcECUhpRSlGgVS8poFkdAuVIUxEfDDXV9lChoBmgJaA9DCAZLdQEveXNAlIaUUpRoFUvZaBZHQLlSLg2qDK51fZQoaAZoCWgPQwgudvus8lJyQJSGlFKUaBVLr2gWR0C5UivtIClrdX2UKGgGaAloD0MInOCbps/3cECUhpRSlGgVS85oFkdAuVJAtz0Yj3V9lChoBmgJaA9DCJijx++t53JAlIaUUpRoFUvKaBZHQLlSQ0yxiXp1fZQoaAZoCWgPQwiaIyu/DJpyQJSGlFKUaBVLu2gWR0C5UmRZlnRLdX2UKGgGaAloD0MIJA7ZQHoZc0CUhpRSlGgVS/FoFkdAuVrVCw8nu3V9lChoBmgJaA9DCHhjQWGQIXJAlIaUUpRoFUvKaBZHQLla4ZGrjo91fZQoaAZoCWgPQwhGtYgo5oRzQJSGlFKUaBVL4mgWR0C5Wvc580DVdX2UKGgGaAloD0MIFyzVBXxkckCUhpRSlGgVS7hoFkdAuVr29PDYRXV9lChoBmgJaA9DCGlSCrr9tXFAlIaUUpRoFUvKaBZHQLla+bT+ee51fZQoaAZoCWgPQwiwBFJiFydxQJSGlFKUaBVLvmgWR0C5WvwE2YOUdX2UKGgGaAloD0MIg1K0cm/Cc0CUhpRSlGgVS+toFkdAuVsHP9kz43V9lChoBmgJaA9DCFTjpZsEG3JAlIaUUpRoFUu2aBZHQLlbDE87p3Z1fZQoaAZoCWgPQwiOQLyuXwhwQJSGlFKUaBVLv2gWR0C5W0zTrmhedX2UKGgGaAloD0MIaw97oUA5ckCUhpRSlGgVS8toFkdAuVtqWPcSG3V9lChoBmgJaA9DCJUtknbjJnJAlIaUUpRoFUvMaBZHQLlbjxkd3jd1fZQoaAZoCWgPQwioUrMHmjByQJSGlFKUaBVLxmgWR0C5W7IqoZQ6dX2UKGgGaAloD0MI9pZyvhjfcUCUhpRSlGgVS9NoFkdAuVu35wfhdnV9lChoBmgJaA9DCJ2BkZd1BXFAlIaUUpRoFUvKaBZHQLlbtt0FKTV1fZQoaAZoCWgPQwhj7ISX4FByQJSGlFKUaBVL2mgWR0C5W8CrDIikdX2UKGgGaAloD0MIG55eKQvTckCUhpRSlGgVS9toFkdAuVv1u4wyqXV9lChoBmgJaA9DCJZcxeJ3M3JAlIaUUpRoFUu0aBZHQLlcEjVQQ+V1fZQoaAZoCWgPQwg17WKaqX1wQJSGlFKUaBVLt2gWR0C5XCokZ75VdX2UKGgGaAloD0MIXfxtTxAtcUCUhpRSlGgVS8xoFkdAuVwwPRRdhXV9lChoBmgJaA9DCAQBMnTspXBAlIaUUpRoFUu5aBZHQLlcM987ZFp1fZQoaAZoCWgPQwhEaW/wBdtxQJSGlFKUaBVL0mgWR0C5XFt4JNTMdX2UKGgGaAloD0MIkC42rRSCcECUhpRSlGgVS8toFkdAuVxgWfseGXV9lChoBmgJaA9DCL+CNGPRq3JAlIaUUpRoFUvOaBZHQLlcbScLBsR1fZQoaAZoCWgPQwg1ejVAaZxzQJSGlFKUaBVL3GgWR0C5XHIPTXrddX2UKGgGaAloD0MIEFoPXyZZckCUhpRSlGgVS89oFkdAuVy1m+TNdXV9lChoBmgJaA9DCNh+MsYHxW5AlIaUUpRoFUvKaBZHQLlc8LeyiVV1fZQoaAZoCWgPQwiR1ELJ5GlxQJSGlFKUaBVLy2gWR0C5XRSv1UVBdX2UKGgGaAloD0MIradWXx19c0CUhpRSlGgVS8toFkdAuV0bej2zwHV9lChoBmgJaA9DCGAeMuUDq3FAlIaUUpRoFUvRaBZHQLldJky1uzh1fZQoaAZoCWgPQwirXn6nCZFzQJSGlFKUaBVL/WgWR0C5XSr/CIk7dX2UKGgGaAloD0MIN1MhHkkscUCUhpRSlGgVS91oFkdAuV1F5/smfHV9lChoBmgJaA9DCMk9Xd1xbXFAlIaUUpRoFUu0aBZHQLldVVH4Glh1fZQoaAZoCWgPQwhBgAwdu5RvQJSGlFKUaBVLzmgWR0C5XWUFr2xqdX2UKGgGaAloD0MI0Jfe/hx2cECUhpRSlGgVS8JoFkdAuV2H06HTJHV9lChoBmgJaA9DCFThz/Dme3NAlIaUUpRoFUvDaBZHQLldjnw5NoJ1fZQoaAZoCWgPQwh/3H75ZHtwQJSGlFKUaBVLs2gWR0C5XayJ0nw5dX2UKGgGaAloD0MIyeNp+cHwckCUhpRSlGgVS8loFkdAuV3IcrAgxXV9lChoBmgJaA9DCB3KUBVT4HBAlIaUUpRoFUvCaBZHQLldy2aUiY91fZQoaAZoCWgPQwjcSxqjdbJxQJSGlFKUaBVL0GgWR0C5XdDMJQchdX2UKGgGaAloD0MII8DpXbx8c0CUhpRSlGgVS/BoFkdAuV3gcfeUIXV9lChoBmgJaA9DCCXLSSj9P3NAlIaUUpRoFUvPaBZHQLleImbLEDR1fZQoaAZoCWgPQwh2wHXFzN5yQJSGlFKUaBVLt2gWR0C5Xlhu0kWzdX2UKGgGaAloD0MIfJ3Ul+XVc0CUhpRSlGgVS7JoFkdAuV5d8zAN5XV9lChoBmgJaA9DCAOWXMXiLnJAlIaUUpRoFUvGaBZHQLlebdbgTAZ1fZQoaAZoCWgPQwjNO07R0S9xQJSGlFKUaBVL2mgWR0C5XnBF3IMjdX2UKGgGaAloD0MIPKJCdTO1cUCUhpRSlGgVS9poFkdAuV6h79hqkHV9lChoBmgJaA9DCLQB2IBI0XJAlIaUUpRoFUvLaBZHQLleuDRMN+d1fZQoaAZoCWgPQwi3Yn/ZPZlvQJSGlFKUaBVL0mgWR0C5XrS+6Ae8dX2UKGgGaAloD0MId9uF5jo2c0CUhpRSlGgVS8poFkdAuV7GEYfnwHV9lChoBmgJaA9DCBmuDoB4hnJAlIaUUpRoFUvGaBZHQLle5HVwxWV1fZQoaAZoCWgPQwjONczQ+HNyQJSGlFKUaBVLwWgWR0C5XvmYWtU5dX2UKGgGaAloD0MI46jcRG3DckCUhpRSlGgVS7loFkdAuV8OlSCOFXV9lChoBmgJaA9DCBrAWyBBXHNAlIaUUpRoFUvnaBZHQLlfFm16Vt51fZQoaAZoCWgPQwh7TQ8KirlyQJSGlFKUaBVLxGgWR0C5XxnKr7wbdX2UKGgGaAloD0MIweEFESnGcUCUhpRSlGgVS8toFkdAuV8njNpudnV9lChoBmgJaA9DCOPfZ1z4B3JAlIaUUpRoFUvXaBZHQLlfUKc/dIp1fZQoaAZoCWgPQwhW0/VE12dLQJSGlFKUaBVLgmgWR0C5X5EdvKlpdX2UKGgGaAloD0MI9BjlmZftckCUhpRSlGgVS9NoFkdAuV+RJnQIEHV9lChoBmgJaA9DCL7e/fEeeXFAlIaUUpRoFUu4aBZHQLlfraWX1J11fZQoaAZoCWgPQwjb3QN0H51yQJSGlFKUaBVLy2gWR0C5X7guM+/ydX2UKGgGaAloD0MINPeQ8D0TdECUhpRSlGgVS8ZoFkdAuV+0kD6nBXV9lChoBmgJaA9DCC2xMhq5E3NAlIaUUpRoFUvDaBZHQLlfvkLhJiB1fZQoaAZoCWgPQwi6FFeVPQBzQJSGlFKUaBVLw2gWR0C5X+y2x6fKdX2UKGgGaAloD0MIo5BkVi88ckCUhpRSlGgVS75oFkdAuV/5SflIVnV9lChoBmgJaA9DCJc3h2v123BAlIaUUpRoFUvDaBZHQLlgDn7Hhjx1fZQoaAZoCWgPQwieQUP/BIZvQJSGlFKUaBVLymgWR0C5YD0ahpQDdX2UKGgGaAloD0MIXANbJdiPcUCUhpRSlGgVS8JoFkdAuWBcj4YaYXV9lChoBmgJaA9DCLCryVOWfHJAlIaUUpRoFUvOaBZHQLlgXK0D2al1fZQoaAZoCWgPQwiiz0cZMR9xQJSGlFKUaBVLvmgWR0C5YF4pH7P6dX2UKGgGaAloD0MINL4vLlVTb0CUhpRSlGgVS9NoFkdAuWCIyN4qw3V9lChoBmgJaA9DCHQkl/+Q529AlIaUUpRoFUvOaBZHQLlgjrwe/6B1fZQoaAZoCWgPQwi4PNaMzFRzQJSGlFKUaBVL12gWR0C5YMawD/2kdX2UKGgGaAloD0MI8YCyKVfTcUCUhpRSlGgVS71oFkdAuWDaNIbwSnV9lChoBmgJaA9DCP4qwHcb1G5AlIaUUpRoFUvOaBZHQLlg+Suhbnp1fZQoaAZoCWgPQwgO9buwNXhyQJSGlFKUaBVLxWgWR0C5YQcnVoYfdX2UKGgGaAloD0MIdvwXCEJ4cECUhpRSlGgVS8FoFkdAuWEG+ajN6nV9lChoBmgJaA9DCC4aMh7lBXJAlIaUUpRoFUu/aBZHQLlhDoLofSx1fZQoaAZoCWgPQwhmv+50p0tzQJSGlFKUaBVLz2gWR0C5YSL2pQ1rdX2UKGgGaAloD0MIv/T25yJgckCUhpRSlGgVS99oFkdAuWF4fhddFHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1348,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:120d079633f357d314c86aa26c907ff1a1083b75e5fbe5a4feae20dfe5b97773
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:953c7e1fb6a47f51debc416c7b4a7f09d2186d3b1a0887c526274fffbaa2df34
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:662ecec3a381339896fc87e123ecef133b2f073479d799b967fccf5b9293560c
|
3 |
+
size 175726
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.3618728953799, "std_reward": 16.12335333518147, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T15:16:52.743558"}
|