File size: 2,964 Bytes
819ccda
 
f49f541
 
819ccda
 
8470445
 
 
 
 
 
0eed571
 
 
 
8470445
 
 
 
479f348
 
 
8470445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---

Converted version of [Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) to 4-bit using bitsandbytes. For more information about the model,
refer to the model's page.

## Impact on performance
Impact of quantization on a set of models.

We evaluated the models using the **PoLL (Pool of LLM)** technique a panel of giga-models (GPT-4o, Gemini Pro 1.5, and Claude-Sonnet 3.5). The scoring ranged from 0,
indicating a model unsuitable for the task, to 5, representing a model that fully met expectations. The evaluation was based on 67 instructions across four programming
languages: Python, Java, JavaScript, and Pseudo-code. All tests were conducted in a French-language context, and models were heavily penalized if they responded in
another language, even if the response was technically correct.

Performance Scores (on a scale of 5):
| Model                                        | Score    | # params (Billion) | size (GB) |
|---------------------------------------------:|:--------:|:------------------:|:---------:|
| gemini-1.5-pro                               | 4.51     | NA                 | NA        |
| gpt-4o                                       | 4.51     | NA                 | NA        |
| claude3.5-sonnet                             | 4.49     | NA                 | NA        |
| deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct  | 4.24     | 15.7               | 31.4      |
| meta-llama/Meta-Llama-3.1-70B-Instruct	   | 4.23     | 70.06              | 141.2     |
| cmarkea/Meta-Llama-3.1-70B-Instruct-4bit     | 4.14     | 70.06              | 35.3      |
| Qwen/Qwen2.5-Coder-7B-Instruct               | 4.11     | 7.62               | 15.24     |
| **cmarkea/Qwen2.5-Coder-7B-Instruct-4bit**   | **4.08** | **7.62**           | **3.81**  |
| cmarkea/Mixtral-8x7B-Instruct-v0.1-4bit      | 3.8      | 46.7               | 23.35     |
| meta-llama/Meta-Llama-3.1-8B-Instruct        | 3.73     | 8.03               | 16.06     |
| mistralai/Mixtral-8x7B-Instruct-v0.1         | 3.33     | 46.7               | 93.4      |
| codellama/CodeLlama-13b-Instruct-hf          | 3.33     | 13                 | 26        |
| codellama/CodeLlama-34b-Instruct-hf          | 3.27     | 33.7               | 67.4      |
| codellama/CodeLlama-7b-Instruct-hf           | 3.19     | 6.74               | 13.48     |
| cmarkea/CodeLlama-34b-Instruct-hf-4bit       | 3.12     | 33.7               | 16.35     |
| codellama/CodeLlama-70b-Instruct-hf          | 1.82     | 69                 | 138       |
| cmarkea/CodeLlama-70b-Instruct-hf-4bit       | 1.64     | 69                 | 34.5      |

The impact of quantization is negligible.

## Prompt Pattern
Here is a reminder of the command pattern to interact with the model:
```verbatim
<|im_start|>user\n{user_prompt_1}<|im_end|><|im_start|>assistant\n{model_answer_1}<|im_end|>...
```