Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# Mixtral MOE 2x34B
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
MoE of the following models :
|
10 |
+
|
11 |
+
|
12 |
+
* [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k)
|
13 |
+
* [mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6)
|
14 |
+
|
15 |
+
|
16 |
+
* metrics:
|
17 |
+
Average 73.43
|
18 |
+
ARC 71.25
|
19 |
+
HellaSwag 87.45
|
20 |
+
|
21 |
+
gpu code example
|
22 |
+
|
23 |
+
```
|
24 |
+
import torch
|
25 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
26 |
+
import math
|
27 |
+
|
28 |
+
## v2 models
|
29 |
+
model_path = "cloudyu/Mixtral_34Bx2_MoE_60B"
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
|
34 |
+
)
|
35 |
+
print(model)
|
36 |
+
prompt = input("please input prompt:")
|
37 |
+
while len(prompt) > 0:
|
38 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
|
39 |
+
|
40 |
+
generation_output = model.generate(
|
41 |
+
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
|
42 |
+
)
|
43 |
+
print(tokenizer.decode(generation_output[0]))
|
44 |
+
prompt = input("please input prompt:")
|
45 |
+
```
|
46 |
+
|
47 |
+
CPU example
|
48 |
+
|
49 |
+
```
|
50 |
+
import torch
|
51 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
52 |
+
import math
|
53 |
+
|
54 |
+
## v2 models
|
55 |
+
model_path = "cloudyu/Mixtral_34Bx2_MoE_60B"
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
|
60 |
+
)
|
61 |
+
print(model)
|
62 |
+
prompt = input("please input prompt:")
|
63 |
+
while len(prompt) > 0:
|
64 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
65 |
+
|
66 |
+
generation_output = model.generate(
|
67 |
+
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
|
68 |
+
)
|
69 |
+
print(tokenizer.decode(generation_output[0]))
|
70 |
+
prompt = input("please input prompt:")
|
71 |
+
|
72 |
+
```
|