sdpkjc commited on
Commit
2b70ccc
·
1 Parent(s): 7a40e33

pushing model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ dqn_atari.cleanrl_model filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - MsPacmanNoFrameskip-v4
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - custom-implementation
7
+ library_name: cleanrl
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MsPacmanNoFrameskip-v4
16
+ type: MsPacmanNoFrameskip-v4
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2585.00 +/- 842.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # (CleanRL) **DQN** Agent Playing **MsPacmanNoFrameskip-v4**
25
+
26
+ This is a trained model of a DQN agent playing MsPacmanNoFrameskip-v4.
27
+ The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
28
+ found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py).
29
+
30
+ ## Get Started
31
+
32
+ To use this model, please install the `cleanrl` package with the following command:
33
+
34
+ ```
35
+ pip install "cleanrl[dqn_atari]"
36
+ python -m cleanrl_utils.enjoy --exp-name dqn_atari --env-id MsPacmanNoFrameskip-v4
37
+ ```
38
+
39
+ Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
40
+
41
+
42
+ ## Command to reproduce the training
43
+
44
+ ```bash
45
+ curl -OL https://huggingface.co/cleanrl/MsPacmanNoFrameskip-v4-dqn_atari-seed1/raw/main/dqn_atari.py
46
+ curl -OL https://huggingface.co/cleanrl/MsPacmanNoFrameskip-v4-dqn_atari-seed1/raw/main/pyproject.toml
47
+ curl -OL https://huggingface.co/cleanrl/MsPacmanNoFrameskip-v4-dqn_atari-seed1/raw/main/poetry.lock
48
+ poetry install --all-extras
49
+ python dqn_atari.py --save-model --upload-model --hf-entity cleanrl --env-id MsPacmanNoFrameskip-v4 --track
50
+ ```
51
+
52
+ # Hyperparameters
53
+ ```python
54
+ {'batch_size': 32,
55
+ 'buffer_size': 1000000,
56
+ 'capture_video': False,
57
+ 'cuda': True,
58
+ 'end_e': 0.01,
59
+ 'env_id': 'MsPacmanNoFrameskip-v4',
60
+ 'exp_name': 'dqn_atari',
61
+ 'exploration_fraction': 0.1,
62
+ 'gamma': 0.99,
63
+ 'hf_entity': 'cleanrl',
64
+ 'learning_rate': 0.0001,
65
+ 'learning_starts': 80000,
66
+ 'num_envs': 1,
67
+ 'save_model': True,
68
+ 'seed': 1,
69
+ 'start_e': 1,
70
+ 'target_network_frequency': 1000,
71
+ 'tau': 1.0,
72
+ 'torch_deterministic': True,
73
+ 'total_timesteps': 10000000,
74
+ 'track': True,
75
+ 'train_frequency': 4,
76
+ 'upload_model': True,
77
+ 'wandb_entity': None,
78
+ 'wandb_project_name': 'cleanRL'}
79
+ ```
80
+
dqn_atari.cleanrl_model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5454274f7777db8011f3fac2174c67ad249cce3ab213931a09f198821daf02a8
3
+ size 6758559
dqn_atari.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_ataripy
2
+ import argparse
3
+ import os
4
+ import random
5
+ import time
6
+ from distutils.util import strtobool
7
+
8
+ import gymnasium as gym
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import torch.optim as optim
14
+ from stable_baselines3.common.atari_wrappers import (
15
+ ClipRewardEnv,
16
+ EpisodicLifeEnv,
17
+ FireResetEnv,
18
+ MaxAndSkipEnv,
19
+ NoopResetEnv,
20
+ )
21
+ from stable_baselines3.common.buffers import ReplayBuffer
22
+ from torch.utils.tensorboard import SummaryWriter
23
+
24
+
25
+ def parse_args():
26
+ # fmt: off
27
+ parser = argparse.ArgumentParser()
28
+ parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
29
+ help="the name of this experiment")
30
+ parser.add_argument("--seed", type=int, default=1,
31
+ help="seed of the experiment")
32
+ parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
33
+ help="if toggled, `torch.backends.cudnn.deterministic=False`")
34
+ parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
35
+ help="if toggled, cuda will be enabled by default")
36
+ parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
37
+ help="if toggled, this experiment will be tracked with Weights and Biases")
38
+ parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
39
+ help="the wandb's project name")
40
+ parser.add_argument("--wandb-entity", type=str, default=None,
41
+ help="the entity (team) of wandb's project")
42
+ parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
43
+ help="whether to capture videos of the agent performances (check out `videos` folder)")
44
+ parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
45
+ help="whether to save model into the `runs/{run_name}` folder")
46
+ parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
47
+ help="whether to upload the saved model to huggingface")
48
+ parser.add_argument("--hf-entity", type=str, default="",
49
+ help="the user or org name of the model repository from the Hugging Face Hub")
50
+
51
+ # Algorithm specific arguments
52
+ parser.add_argument("--env-id", type=str, default="BreakoutNoFrameskip-v4",
53
+ help="the id of the environment")
54
+ parser.add_argument("--total-timesteps", type=int, default=10000000,
55
+ help="total timesteps of the experiments")
56
+ parser.add_argument("--learning-rate", type=float, default=1e-4,
57
+ help="the learning rate of the optimizer")
58
+ parser.add_argument("--num-envs", type=int, default=1,
59
+ help="the number of parallel game environments")
60
+ parser.add_argument("--buffer-size", type=int, default=1000000,
61
+ help="the replay memory buffer size")
62
+ parser.add_argument("--gamma", type=float, default=0.99,
63
+ help="the discount factor gamma")
64
+ parser.add_argument("--tau", type=float, default=1.,
65
+ help="the target network update rate")
66
+ parser.add_argument("--target-network-frequency", type=int, default=1000,
67
+ help="the timesteps it takes to update the target network")
68
+ parser.add_argument("--batch-size", type=int, default=32,
69
+ help="the batch size of sample from the reply memory")
70
+ parser.add_argument("--start-e", type=float, default=1,
71
+ help="the starting epsilon for exploration")
72
+ parser.add_argument("--end-e", type=float, default=0.01,
73
+ help="the ending epsilon for exploration")
74
+ parser.add_argument("--exploration-fraction", type=float, default=0.10,
75
+ help="the fraction of `total-timesteps` it takes from start-e to go end-e")
76
+ parser.add_argument("--learning-starts", type=int, default=80000,
77
+ help="timestep to start learning")
78
+ parser.add_argument("--train-frequency", type=int, default=4,
79
+ help="the frequency of training")
80
+ args = parser.parse_args()
81
+ # fmt: on
82
+ assert args.num_envs == 1, "vectorized envs are not supported at the moment"
83
+
84
+ return args
85
+
86
+
87
+ def make_env(env_id, seed, idx, capture_video, run_name):
88
+ def thunk():
89
+ if capture_video and idx == 0:
90
+ env = gym.make(env_id, render_mode="rgb_array")
91
+ env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
92
+ else:
93
+ env = gym.make(env_id)
94
+ env = gym.wrappers.RecordEpisodeStatistics(env)
95
+
96
+ env = NoopResetEnv(env, noop_max=30)
97
+ env = MaxAndSkipEnv(env, skip=4)
98
+ env = EpisodicLifeEnv(env)
99
+ if "FIRE" in env.unwrapped.get_action_meanings():
100
+ env = FireResetEnv(env)
101
+ env = ClipRewardEnv(env)
102
+ env = gym.wrappers.ResizeObservation(env, (84, 84))
103
+ env = gym.wrappers.GrayScaleObservation(env)
104
+ env = gym.wrappers.FrameStack(env, 4)
105
+
106
+ env.action_space.seed(seed)
107
+ return env
108
+
109
+ return thunk
110
+
111
+
112
+ # ALGO LOGIC: initialize agent here:
113
+ class QNetwork(nn.Module):
114
+ def __init__(self, env):
115
+ super().__init__()
116
+ self.network = nn.Sequential(
117
+ nn.Conv2d(4, 32, 8, stride=4),
118
+ nn.ReLU(),
119
+ nn.Conv2d(32, 64, 4, stride=2),
120
+ nn.ReLU(),
121
+ nn.Conv2d(64, 64, 3, stride=1),
122
+ nn.ReLU(),
123
+ nn.Flatten(),
124
+ nn.Linear(3136, 512),
125
+ nn.ReLU(),
126
+ nn.Linear(512, env.single_action_space.n),
127
+ )
128
+
129
+ def forward(self, x):
130
+ return self.network(x / 255.0)
131
+
132
+
133
+ def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
134
+ slope = (end_e - start_e) / duration
135
+ return max(slope * t + start_e, end_e)
136
+
137
+
138
+ if __name__ == "__main__":
139
+ import stable_baselines3 as sb3
140
+
141
+ if sb3.__version__ < "2.0":
142
+ raise ValueError(
143
+ """Ongoing migration: run the following command to install the new dependencies:
144
+
145
+ poetry run pip install "stable_baselines3==2.0.0a1" "gymnasium[atari,accept-rom-license]==0.28.1" "ale-py==0.8.1"
146
+ """
147
+ )
148
+ args = parse_args()
149
+ run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
150
+ if args.track:
151
+ import wandb
152
+
153
+ wandb.init(
154
+ project=args.wandb_project_name,
155
+ entity=args.wandb_entity,
156
+ sync_tensorboard=True,
157
+ config=vars(args),
158
+ name=run_name,
159
+ monitor_gym=True,
160
+ save_code=True,
161
+ )
162
+ writer = SummaryWriter(f"runs/{run_name}")
163
+ writer.add_text(
164
+ "hyperparameters",
165
+ "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
166
+ )
167
+
168
+ # TRY NOT TO MODIFY: seeding
169
+ random.seed(args.seed)
170
+ np.random.seed(args.seed)
171
+ torch.manual_seed(args.seed)
172
+ torch.backends.cudnn.deterministic = args.torch_deterministic
173
+
174
+ device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
175
+
176
+ # env setup
177
+ envs = gym.vector.SyncVectorEnv(
178
+ [make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)]
179
+ )
180
+ assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
181
+
182
+ q_network = QNetwork(envs).to(device)
183
+ optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
184
+ target_network = QNetwork(envs).to(device)
185
+ target_network.load_state_dict(q_network.state_dict())
186
+
187
+ rb = ReplayBuffer(
188
+ args.buffer_size,
189
+ envs.single_observation_space,
190
+ envs.single_action_space,
191
+ device,
192
+ optimize_memory_usage=True,
193
+ handle_timeout_termination=False,
194
+ )
195
+ start_time = time.time()
196
+
197
+ # TRY NOT TO MODIFY: start the game
198
+ obs, _ = envs.reset(seed=args.seed)
199
+ for global_step in range(args.total_timesteps):
200
+ # ALGO LOGIC: put action logic here
201
+ epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
202
+ if random.random() < epsilon:
203
+ actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
204
+ else:
205
+ q_values = q_network(torch.Tensor(obs).to(device))
206
+ actions = torch.argmax(q_values, dim=1).cpu().numpy()
207
+
208
+ # TRY NOT TO MODIFY: execute the game and log data.
209
+ next_obs, rewards, terminations, truncations, infos = envs.step(actions)
210
+
211
+ # TRY NOT TO MODIFY: record rewards for plotting purposes
212
+ if "final_info" in infos:
213
+ for info in infos["final_info"]:
214
+ # Skip the envs that are not done
215
+ if "episode" not in info:
216
+ continue
217
+ print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
218
+ writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
219
+ writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
220
+ writer.add_scalar("charts/epsilon", epsilon, global_step)
221
+ break
222
+
223
+ # TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
224
+ real_next_obs = next_obs.copy()
225
+ for idx, trunc in enumerate(truncations):
226
+ if trunc:
227
+ real_next_obs[idx] = infos["final_observation"][idx]
228
+ rb.add(obs, real_next_obs, actions, rewards, terminations, infos)
229
+
230
+ # TRY NOT TO MODIFY: CRUCIAL step easy to overlook
231
+ obs = next_obs
232
+
233
+ # ALGO LOGIC: training.
234
+ if global_step > args.learning_starts:
235
+ if global_step % args.train_frequency == 0:
236
+ data = rb.sample(args.batch_size)
237
+ with torch.no_grad():
238
+ target_max, _ = target_network(data.next_observations).max(dim=1)
239
+ td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten())
240
+ old_val = q_network(data.observations).gather(1, data.actions).squeeze()
241
+ loss = F.mse_loss(td_target, old_val)
242
+
243
+ if global_step % 100 == 0:
244
+ writer.add_scalar("losses/td_loss", loss, global_step)
245
+ writer.add_scalar("losses/q_values", old_val.mean().item(), global_step)
246
+ print("SPS:", int(global_step / (time.time() - start_time)))
247
+ writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
248
+
249
+ # optimize the model
250
+ optimizer.zero_grad()
251
+ loss.backward()
252
+ optimizer.step()
253
+
254
+ # update target network
255
+ if global_step % args.target_network_frequency == 0:
256
+ for target_network_param, q_network_param in zip(target_network.parameters(), q_network.parameters()):
257
+ target_network_param.data.copy_(
258
+ args.tau * q_network_param.data + (1.0 - args.tau) * target_network_param.data
259
+ )
260
+
261
+ if args.save_model:
262
+ model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
263
+ torch.save(q_network.state_dict(), model_path)
264
+ print(f"model saved to {model_path}")
265
+ from cleanrl_utils.evals.dqn_eval import evaluate
266
+
267
+ episodic_returns = evaluate(
268
+ model_path,
269
+ make_env,
270
+ args.env_id,
271
+ eval_episodes=10,
272
+ run_name=f"{run_name}-eval",
273
+ Model=QNetwork,
274
+ device=device,
275
+ epsilon=0.05,
276
+ )
277
+ for idx, episodic_return in enumerate(episodic_returns):
278
+ writer.add_scalar("eval/episodic_return", episodic_return, idx)
279
+
280
+ if args.upload_model:
281
+ from cleanrl_utils.huggingface import push_to_hub
282
+
283
+ repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
284
+ repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
285
+ push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")
286
+
287
+ envs.close()
288
+ writer.close()
events.out.tfevents.1699103868.3090-172.2510710.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:695f39a2577e07f9d879e0d8326e4e4655a3109248c709a5e213484cf7e6402a
3
+ size 18047074
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "cleanrl"
3
+ version = "1.1.0"
4
+ description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
5
+ authors = ["Costa Huang <[email protected]>"]
6
+ packages = [
7
+ { include = "cleanrl" },
8
+ { include = "cleanrl_utils" },
9
+ ]
10
+ keywords = ["reinforcement", "machine", "learning", "research"]
11
+ license="MIT"
12
+ readme = "README.md"
13
+
14
+ [tool.poetry.dependencies]
15
+ python = ">=3.7.1,<3.11"
16
+ tensorboard = "^2.10.0"
17
+ wandb = "^0.13.11"
18
+ gym = "0.23.1"
19
+ torch = ">=1.12.1"
20
+ stable-baselines3 = "1.2.0"
21
+ gymnasium = ">=0.28.1"
22
+ moviepy = "^1.0.3"
23
+ pygame = "2.1.0"
24
+ huggingface-hub = "^0.11.1"
25
+ rich = "<12.0"
26
+ tenacity = "^8.2.2"
27
+
28
+ ale-py = {version = "0.7.4", optional = true}
29
+ AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2", optional = true}
30
+ opencv-python = {version = "^4.6.0.66", optional = true}
31
+ procgen = {version = "^0.10.7", optional = true}
32
+ pytest = {version = "^7.1.3", optional = true}
33
+ mujoco = {version = "<=2.3.3", optional = true}
34
+ imageio = {version = "^2.14.1", optional = true}
35
+ free-mujoco-py = {version = "^2.1.6", optional = true}
36
+ mkdocs-material = {version = "^8.4.3", optional = true}
37
+ markdown-include = {version = "^0.7.0", optional = true}
38
+ openrlbenchmark = {version = "^0.1.1b4", optional = true}
39
+ jax = {version = "^0.3.17", optional = true}
40
+ jaxlib = {version = "^0.3.15", optional = true}
41
+ flax = {version = "^0.6.0", optional = true}
42
+ optuna = {version = "^3.0.1", optional = true}
43
+ optuna-dashboard = {version = "^0.7.2", optional = true}
44
+ envpool = {version = "^0.6.4", optional = true}
45
+ PettingZoo = {version = "1.18.1", optional = true}
46
+ SuperSuit = {version = "3.4.0", optional = true}
47
+ multi-agent-ale-py = {version = "0.1.11", optional = true}
48
+ boto3 = {version = "^1.24.70", optional = true}
49
+ awscli = {version = "^1.25.71", optional = true}
50
+ shimmy = {version = ">=1.0.0", extras = ["dm-control"], optional = true}
51
+
52
+ [tool.poetry.group.dev.dependencies]
53
+ pre-commit = "^2.20.0"
54
+
55
+
56
+ [tool.poetry.group.isaacgym]
57
+ optional = true
58
+ [tool.poetry.group.isaacgym.dependencies]
59
+ isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry", python = ">=3.7.1,<3.10"}
60
+ isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
61
+
62
+
63
+ [build-system]
64
+ requires = ["poetry-core"]
65
+ build-backend = "poetry.core.masonry.api"
66
+
67
+ [tool.poetry.extras]
68
+ atari = ["ale-py", "AutoROM", "opencv-python"]
69
+ procgen = ["procgen"]
70
+ plot = ["pandas", "seaborn"]
71
+ pytest = ["pytest"]
72
+ mujoco = ["mujoco", "imageio"]
73
+ mujoco_py = ["free-mujoco-py"]
74
+ jax = ["jax", "jaxlib", "flax"]
75
+ docs = ["mkdocs-material", "markdown-include", "openrlbenchmark"]
76
+ envpool = ["envpool"]
77
+ optuna = ["optuna", "optuna-dashboard"]
78
+ pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
79
+ cloud = ["boto3", "awscli"]
80
+ dm_control = ["shimmy", "mujoco"]
81
+
82
+ # dependencies for algorithm variant (useful when you want to run a specific algorithm)
83
+ dqn = []
84
+ dqn_atari = ["ale-py", "AutoROM", "opencv-python"]
85
+ dqn_jax = ["jax", "jaxlib", "flax"]
86
+ dqn_atari_jax = [
87
+ "ale-py", "AutoROM", "opencv-python", # atari
88
+ "jax", "jaxlib", "flax" # jax
89
+ ]
90
+ c51 = []
91
+ c51_atari = ["ale-py", "AutoROM", "opencv-python"]
92
+ c51_jax = ["jax", "jaxlib", "flax"]
93
+ c51_atari_jax = [
94
+ "ale-py", "AutoROM", "opencv-python", # atari
95
+ "jax", "jaxlib", "flax" # jax
96
+ ]
97
+ ppo_atari_envpool_xla_jax_scan = [
98
+ "ale-py", "AutoROM", "opencv-python", # atari
99
+ "jax", "jaxlib", "flax", # jax
100
+ "envpool", # envpool
101
+ ]
102
+ qdagger_dqn_atari_impalacnn = [
103
+ "ale-py", "AutoROM", "opencv-python"
104
+ ]
105
+ qdagger_dqn_atari_jax_impalacnn = [
106
+ "ale-py", "AutoROM", "opencv-python", # atari
107
+ "jax", "jaxlib", "flax", # jax
108
+ ]
replay.mp4 ADDED
Binary file (567 kB). View file
 
videos/MsPacmanNoFrameskip-v4__dqn_atari__1__1699103863-eval/rl-video-episode-0.mp4 ADDED
Binary file (604 kB). View file
 
videos/MsPacmanNoFrameskip-v4__dqn_atari__1__1699103863-eval/rl-video-episode-1.mp4 ADDED
Binary file (647 kB). View file
 
videos/MsPacmanNoFrameskip-v4__dqn_atari__1__1699103863-eval/rl-video-episode-8.mp4 ADDED
Binary file (567 kB). View file