File size: 7,805 Bytes
18726e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfc0234
18726e6
 
 
 
 
 
cfc0234
 
18726e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
language: pl
license: mit
tags:
  - ner
datasets:
  - clarin-pl/kpwr-ner
metrics:
  - f1
  - accuracy
  - precision
  - recall
widget:
  - text: "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
    example_title: "Example"
---

# FastPDN

FastPolDeepNer is a model designed for easy use, training and configuration. The forerunner of this project is [PolDeepNer2](https://gitlab.clarin-pl.eu/information-extraction/poldeepner2). The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers.

## How to use

Here is how to use this model to get the Named Entities in text:

```python
from transformers import pipeline
ner = pipeline('ner', model='clarin-pl/FastPDN', aggregation_strategy='simple')

text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
ner_results = ner(text)
for output in ner_results:
    print(output)

{'entity_group': 'nam_liv_person', 'score': 0.9996054, 'word': 'Jan Kowalski', 'start': 12, 'end': 24}
{'entity_group': 'nam_loc_gpe_city', 'score': 0.998931, 'word': 'Wrocławiu', 'start': 39, 'end': 48}
```

Here is how to use this model to get the logits for every token in text:

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN")
model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN")

text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```

### Developing

Model pipeline consists of 2 steps:

- Data processing
- Training
- (optional) Share model to Hugginface Hub

#### Config

This project use hydra configuration. Every configuration used in this module
is placed in `.yaml` files in `config` directory.

This directory has structure:

- prepare_data.yaml - main configuration for the data processing stage
- train.yaml - main configuration for the training stage
- share_mode.yaml - main configuraion for sharing model to Huggingface Hub
- callbacks - contains callbacks for pytorch_lightning trainer
  - default.yaml
  - early_stopping.yaml
  - learning_rate_monitor.yaml
  - model_checkpoint.yaml
  - rich_progress_bar.yaml
- datamodule - contains pytorch_lightning datamodule configuration
  - pdn.yaml
- experiment - contains all the configurations of executed experiments
- hydra - hydra configuration files
- loggers - contains loggers for trainer
  - csv.yaml
  - many_loggers.yaml
  - tensorboards.yaml
  - wandb.yaml
- model - contains model architecture hyperparameters
  - default.yaml
  - distiluse.yaml
  - custom_classification_head.yaml
  - multilabel.yaml
- paths - contains paths for IO
- prepare_data - contains configuration for data processing stage
  - cen_n82
  - default
- trainer - contains trainer configurations
  - default.yaml
  - cpu.yaml
  - gpu.yaml

#### Training

1. Install requirements with poetry

```
poetry install
```

2. Use poetry environment in next steps

```
poetry shell
```

or

```
poetry run <command>
```

3. Prepare dataset

```
python3 src/prepare_data.py experiment=<experiment-name>
```

4. Train model

```
CUDA_VISIBLE_DEVICES=<device-id> python3 src/train.py experiment=<experiment-name>
```

5. (optional) Share model to Huggingface Hub

```
python3 src/share_model.py
```

## Evaluation

Runs trained on `cen_n82` and `kpwr_n82`:
| name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall|
|---------|-------|------------|--------|--------------|-----------|
|distiluse| 0.53 | 0.61 | 0.95 | 0.55 | 0.54 |
| herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 |

Runs trained and validated only on `cen_n82`:
| name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall|
|----------------|-------|------------|--------|--------------|-----------|
| distiluse_cen | 0.58 | 0.7 | 0.96 | 0.6 | 0.59 |
|herbert_cen_bs32| 0.71 | 0.84 | 0.97 | 0.72 | 0.72 |
| herbert_cen | 0.72 | 0.84 | 0.97 | 0.73 | 0.73 |

Detailed results for `herbert`:
| tag | f1 |precision|recall|support|
|-------------------------|----|---------|------|-------|
| nam_eve_human_cultural |0.65| 0.53 | 0.83 | 88 |
| nam_pro_title_document |0.87| 0.82 | 0.92 | 50 |
| nam_loc_gpe_country |0.82| 0.76 | 0.9 | 258 |
| nam_oth_www |0.71| 0.85 | 0.61 | 18 |
| nam_liv_person |0.94| 0.89 | 1.0 | 8 |
| nam_adj_country |0.44| 0.42 | 0.46 | 94 |
| nam_org_institution |0.15| 0.16 | 0.14 | 22 |
| nam_loc_land_continent | 0.5| 0.57 | 0.44 | 9 |
| nam_org_organization |0.64| 0.59 | 0.71 | 58 |
| nam_liv_god |0.13| 0.09 | 0.25 | 4 |
| nam_loc_gpe_city |0.56| 0.51 | 0.62 | 87 |
| nam_org_company | 0.0| 0.0 | 0.0 | 4 |
| nam_oth_currency |0.71| 0.86 | 0.6 | 10 |
| nam_org_group_team |0.87| 0.79 | 0.96 | 106 |
| nam_fac_road |0.67| 0.67 | 0.67 | 6 |
| nam_fac_park |0.39| 0.7 | 0.27 | 26 |
| nam_pro_title_tv |0.17| 1.0 | 0.09 | 11 |
| nam_loc_gpe_admin3 |0.91| 0.97 | 0.86 | 35 |
| nam_adj |0.47| 0.5 | 0.44 | 9 |
| nam_loc_gpe_admin1 |0.92| 0.91 | 0.93 | 1146 |
| nam_oth_tech | 0.0| 0.0 | 0.0 | 4 |
| nam_pro_brand |0.93| 0.88 | 1.0 | 14 |
| nam_fac_goe | 0.1| 0.07 | 0.14 | 7 |
| nam_eve_human |0.76| 0.73 | 0.78 | 74 |
| nam_pro_vehicle |0.81| 0.79 | 0.83 | 36 |
| nam_oth | 0.8| 0.82 | 0.79 | 47 |
| nam_org_nation |0.85| 0.87 | 0.84 | 516 |
| nam_pro_media_periodic |0.95| 0.94 | 0.96 | 603 |
| nam_adj_city |0.43| 0.39 | 0.47 | 19 |
| nam_oth_position |0.56| 0.54 | 0.58 | 26 |
| nam_pro_title |0.63| 0.68 | 0.59 | 22 |
| nam_pro_media_tv |0.29| 0.2 | 0.5 | 2 |
| nam_fac_system |0.29| 0.2 | 0.5 | 2 |
| nam_eve_human_holiday | 1.0| 1.0 | 1.0 | 2 |
| nam_loc_gpe_admin2 |0.83| 0.91 | 0.76 | 51 |
| nam_adj_person |0.86| 0.75 | 1.0 | 3 |
| nam_pro_software |0.67| 1.0 | 0.5 | 2 |
| nam_num_house |0.88| 0.9 | 0.86 | 43 |
| nam_pro_media_web |0.32| 0.43 | 0.25 | 12 |
| nam_org_group | 0.5| 0.45 | 0.56 | 9 |
| nam_loc_hydronym_river |0.67| 0.61 | 0.74 | 19 |
| nam_liv_animal |0.88| 0.79 | 1.0 | 11 |
| nam_pro_award | 0.8| 1.0 | 0.67 | 3 |
| nam_pro |0.82| 0.8 | 0.83 | 243 |
| nam_org_political_party |0.34| 0.38 | 0.32 | 19 |
| nam_eve_human_sport |0.65| 0.73 | 0.58 | 19 |
| nam_pro_title_book |0.94| 0.93 | 0.95 | 149 |
| nam_org_group_band |0.74| 0.73 | 0.75 | 359 |
| nam_oth_data_format |0.82| 0.88 | 0.76 | 88 |
| nam_loc_astronomical |0.75| 0.72 | 0.79 | 341 |
| nam_loc_hydronym_sea | 0.4| 1.0 | 0.25 | 4 |
| nam_loc_land_mountain |0.95| 0.96 | 0.95 | 74 |
| nam_loc_land_island |0.55| 0.52 | 0.59 | 46 |
| nam_num_phone |0.91| 0.91 | 0.91 | 137 |
| nam_pro_model_car |0.56| 0.64 | 0.5 | 14 |
| nam_loc_land_region |0.52| 0.5 | 0.55 | 11 |
| nam_liv_habitant |0.38| 0.29 | 0.54 | 13 |
| nam_eve |0.47| 0.38 | 0.61 | 85 |
| nam_loc_historical_region|0.44| 0.8 | 0.31 | 26 |
| nam_fac_bridge |0.33| 0.26 | 0.46 | 24 |
| nam_oth_license |0.65| 0.74 | 0.58 | 24 |
| nam_pro_media |0.33| 0.32 | 0.35 | 52 |
| nam_loc_gpe_subdivision | 0.0| 0.0 | 0.0 | 9 |
| nam_loc_gpe_district |0.84| 0.86 | 0.81 | 108 |
| nam_loc |0.67| 0.6 | 0.75 | 4 |
| nam_pro_software_game |0.75| 0.61 | 0.95 | 20 |
| nam_pro_title_album | 0.6| 0.56 | 0.65 | 52 |
| nam_loc_country_region |0.81| 0.74 | 0.88 | 26 |
| nam_pro_title_song |0.52| 0.6 | 0.45 | 111 |
| nam_org_organization_sub| 0.0| 0.0 | 0.0 | 3 |
| nam_loc_land | 0.4| 0.31 | 0.56 | 36 |
| nam_fac_square | 0.5| 0.6 | 0.43 | 7 |
| nam_loc_hydronym |0.67| 0.56 | 0.82 | 11 |
| nam_loc_hydronym_lake |0.51| 0.44 | 0.61 | 96 |
| nam_fac_goe_stop |0.35| 0.3 | 0.43 | 7 |
| nam_pro_media_radio | 0.0| 0.0 | 0.0 | 2 |
| nam_pro_title_treaty | 0.3| 0.56 | 0.21 | 24 |
| nam_loc_hydronym_ocean |0.35| 0.38 | 0.33 | 33 |

To see all the experiments and graphs head over to wandb - https://wandb.ai/clarin-pl/FastPDN

## Authors

- Grupa Wieszcze CLARIN-PL

## Contact

- Norbert Ropiak ([email protected])