NorbertRop
commited on
Commit
•
d81d813
1
Parent(s):
8b4567f
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: pl
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- ner
|
6 |
+
datasets:
|
7 |
+
- clarin-pl/kpwr-ner
|
8 |
+
metrics:
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
widget:
|
14 |
+
- text: "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
|
15 |
+
example_title: "Example"
|
16 |
+
---
|
17 |
+
|
18 |
+
# FastPDN
|
19 |
+
|
20 |
+
FastPolDeepNer is model for Named Entity Recognition, designed for easy use, training and configuration. The forerunner of this project is [PolDeepNer2](https://gitlab.clarin-pl.eu/information-extraction/poldeepner2). The model implements a pipeline consisting of data processing and training using: hydra, pytorch, pytorch-lightning, transformers.
|
21 |
+
|
22 |
+
Source code: https://gitlab.clarin-pl.eu/grupa-wieszcz/ner/fast-pdn
|
23 |
+
|
24 |
+
## How to use
|
25 |
+
|
26 |
+
Here is how to use this model to get Named Entities in text:
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import pipeline
|
30 |
+
ner = pipeline('ner', model='clarin-pl/FastPDN', aggregation_strategy='simple')
|
31 |
+
|
32 |
+
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
|
33 |
+
ner_results = ner(text)
|
34 |
+
for output in ner_results:
|
35 |
+
print(output)
|
36 |
+
|
37 |
+
{'entity_group': 'nam_liv_person', 'score': 0.9996054, 'word': 'Jan Kowalski', 'start': 12, 'end': 24}
|
38 |
+
{'entity_group': 'nam_loc_gpe_city', 'score': 0.998931, 'word': 'Wrocławiu', 'start': 39, 'end': 48}
|
39 |
+
```
|
40 |
+
|
41 |
+
Here is how to use this model to get the logits for every token in text:
|
42 |
+
|
43 |
+
```python
|
44 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
45 |
+
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("clarin-pl/FastPDN")
|
47 |
+
model = AutoModelForTokenClassification.from_pretrained("clarin-pl/FastPDN")
|
48 |
+
|
49 |
+
text = "Nazywam się Jan Kowalski i mieszkam we Wrocławiu."
|
50 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
51 |
+
output = model(**encoded_input)
|
52 |
+
```
|
53 |
+
|
54 |
+
## Training data
|
55 |
+
The FastPDN model was trained on datasets (with 82 class versions) of kpwr and cen. Annotation guidelines are specified [here](https://clarin-pl.eu/dspace/bitstream/handle/11321/294/WytyczneKPWr-jednostkiidentyfikacyjne.pdf).
|
56 |
+
|
57 |
+
## Pretraining
|
58 |
+
FastPDN models have been fine-tuned, thanks to pretrained models:
|
59 |
+
- [herbert-base-case](https://huggingface.co/allegro/herbert-base-cased)
|
60 |
+
- [distiluse-base-multilingual-cased-v1](sentence-transformers/distiluse-base-multilingual-cased-v1)
|
61 |
+
## Evaluation
|
62 |
+
|
63 |
+
Runs trained on `cen_n82` and `kpwr_n82`:
|
64 |
+
| name |test/f1|test/pdn2_f1|test/acc|test/precision|test/recall|
|
65 |
+
|---------|-------|------------|--------|--------------|-----------|
|
66 |
+
|distiluse| 0.53 | 0.61 | 0.95 | 0.55 | 0.54 |
|
67 |
+
| herbert | 0.68 | 0.78 | 0.97 | 0.7 | 0.69 |
|
68 |
+
|
69 |
+
|
70 |
+
## Authors
|
71 |
+
|
72 |
+
- Grupa Wieszcze CLARIN-PL
|
73 |
+
- Wiktor Walentynowicz
|
74 |
+
|
75 |
+
## Contact
|
76 |
+
|
77 |
+
- Norbert Ropiak ([email protected])
|