Create README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,24 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You can use transformer library and load model for conditional generation and expect those tokens or use monoT5 implementation from BEIR.
|
2 |
+
|
3 |
+
prompt = `Query: {query} Document: {document} Relevant:`
|
4 |
+
|
5 |
+
Model returns tokens if relevant or not:
|
6 |
+
``` token_false='▁fałsz', token_true='▁prawda'```
|
7 |
+
|
8 |
+
|
9 |
+
MonoT5 implementation is included in BEIR benchmark(https://github.com/beir-cellar/beir):
|
10 |
+
```
|
11 |
+
from beir.reranking.models import MonoT5
|
12 |
+
from beir.reranking import Rerank
|
13 |
+
|
14 |
+
queries = YOUR_QUERIES
|
15 |
+
corpus = YOUR_CORPUS
|
16 |
+
queries = {query['id'] : query['text'] for query in queries}
|
17 |
+
corpus = {doc['id']: {'title': doc['title'] , 'text': doc['text']} for doc in corpus}
|
18 |
+
|
19 |
+
|
20 |
+
cross_encoder_model = MonoT5(model_path, use_amp=False, token_false='▁fałsz', token_true='▁prawda')
|
21 |
+
reranker = Rerank(cross_encoder_model, batch_size=100)
|
22 |
+
|
23 |
+
rerank_results = reranker.rerank(corpus, queries, results, top_k=100)
|
24 |
+
```
|