update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- bleu
|
7 |
+
model-index:
|
8 |
+
- name: toki-en-mt
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# toki-en-mt
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ROMANCE-en](https://huggingface.co/Helsinki-NLP/opus-mt-ROMANCE-en) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.2840
|
20 |
+
- Bleu: 26.7612
|
21 |
+
- Gen Len: 9.0631
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 10
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
|
53 |
+
| 1.7228 | 1.0 | 1260 | 1.4572 | 19.9464 | 9.2177 |
|
54 |
+
| 1.3182 | 2.0 | 2520 | 1.3356 | 22.4628 | 9.1263 |
|
55 |
+
| 1.1241 | 3.0 | 3780 | 1.3028 | 23.5152 | 9.0462 |
|
56 |
+
| 0.9995 | 4.0 | 5040 | 1.2784 | 23.9526 | 9.1697 |
|
57 |
+
| 0.8945 | 5.0 | 6300 | 1.2739 | 24.7707 | 9.0914 |
|
58 |
+
| 0.8331 | 6.0 | 7560 | 1.2725 | 25.3477 | 9.0518 |
|
59 |
+
| 0.7641 | 7.0 | 8820 | 1.2770 | 26.165 | 9.0245 |
|
60 |
+
| 0.7163 | 8.0 | 10080 | 1.2809 | 25.8053 | 9.0933 |
|
61 |
+
| 0.6886 | 9.0 | 11340 | 1.2799 | 26.5752 | 9.0669 |
|
62 |
+
| 0.6627 | 10.0 | 12600 | 1.2840 | 26.7612 | 9.0631 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.20.1
|
68 |
+
- Pytorch 1.11.0
|
69 |
+
- Datasets 2.3.2
|
70 |
+
- Tokenizers 0.12.1
|