File size: 1,998 Bytes
300c4da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- audio-classification
- hubert
- esc50
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: hubert-esc50-finetuned-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-esc50-finetuned-v2

This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the ESC-50 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8640
- Accuracy: 0.5225

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 3.5023        | 1.0   | 200  | 3.4954          | 0.1025   |
| 3.0745        | 2.0   | 400  | 3.1206          | 0.14     |
| 2.7667        | 3.0   | 600  | 2.8674          | 0.18     |
| 2.5477        | 4.0   | 800  | 2.6013          | 0.265    |
| 2.3458        | 5.0   | 1000 | 2.5071          | 0.3125   |
| 2.3287        | 6.0   | 1200 | 2.2673          | 0.395    |
| 1.9078        | 7.0   | 1400 | 2.1068          | 0.4425   |
| 1.8707        | 8.0   | 1600 | 2.0044          | 0.4775   |
| 1.7355        | 9.0   | 1800 | 1.8945          | 0.52     |
| 1.7396        | 10.0  | 2000 | 1.8640          | 0.5225   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1