Upload baseline ppo-LunarLander-v2 model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 94.98 +/- 95.30
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **ppo** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc884155f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc88415680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc88415710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc884157a0>", "_build": "<function ActorCriticPolicy._build at 0x7fcc88415830>", "forward": "<function ActorCriticPolicy.forward at 0x7fcc884158c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc88415950>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcc884159e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc88415a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc88415b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc88415b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcc883e9300>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651710920.0202937, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMB20T1cI3m69Ur8uSKTcjYlDhy69o/atQAAgD8AAIA/APySPsymlz/8l449QRiFvrJidD5TFry9AAAAAAAAAABm7qa9f74nP4qfbz06KhG+ZLUwPdLzFj0AAAAAAAAAAFA5nj5cqXS8M7uDu7mXnjkB1rC9SnITOgAAgD8AAIA/Lf0gPszrSz/K11K9YYiNvpqRh7yrcxu8AAAAAAAAAABNcNc9iqOYP0mPMT5RMJi+10IXPmZy1D0AAAAAAAAAAHOjj732uAW6CeK0O5GqUDiGFDM7AsAOtwAAgD8AAIA/pr04PowCsz/50xM/aeVxvvUIFj7N3VY+AAAAAAAAAAAtii++HoKZP4qCFL+Aguy+zX2pvXK/Fb4AAAAAAAAAAM0CND0pUC26UX8oOz7yCLZ7CXs6qpJEugAAgD8AAIA/WoT5vVjdCz+vbo483doevvuJij2e7Qu9AAAAAAAAAACALYw9H03duUMW+TsRwY+2f2WvOfXijLUAAIA/AACAPwAUmzwKR1q5VjYjPE8zErYUVB+5o/IYtQAAgD8AAIA/2n7EPfYQa7oi2/o7de36tbWQFjtTdua0AACAPwAAgD/muuE9KQRYuo5tBDthbaE5Cnylu3oIeDkAAIA/AACAPwDduLwUOpG63siXu6evoTgUHS27/qcNOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL6LtmDptYECUhpRSlIwBbJRN6AOMAXSUR0CTwYD28IzFdX2UKGgGaAloD0MIb0kO2NXEN8CUhpRSlGgVTScBaBZHQJPBpsCT2WZ1fZQoaAZoCWgPQwgOh6WBH9FVQJSGlFKUaBVN6ANoFkdAk9F8vmHP/3V9lChoBmgJaA9DCF4qNuZ1SDJAlIaUUpRoFUvraBZHQJPUIuRLbpN1fZQoaAZoCWgPQwhJvDydK1InwJSGlFKUaBVNAgFoFkdAk/B60MPSUnV9lChoBmgJaA9DCAySPq2iWltAlIaUUpRoFU3oA2gWR0CT8VrnTy8SdX2UKGgGaAloD0MIt9PWiGCtWkCUhpRSlGgVTegDaBZHQJP2OFFlTWJ1fZQoaAZoCWgPQwh5zEBlfPRiQJSGlFKUaBVN6ANoFkdAk/daW1MM7XV9lChoBmgJaA9DCLOWAtL+0FtAlIaUUpRoFU3oA2gWR0CT9+KVY6n0dX2UKGgGaAloD0MI7wG6L2f8UkCUhpRSlGgVTegDaBZHQJP4J5X2dup1fZQoaAZoCWgPQwhBmrFoOiFFwJSGlFKUaBVLzmgWR0CT+3pR4yGjdX2UKGgGaAloD0MIr5Y7M8GYY0CUhpRSlGgVTegDaBZHQJQFgmdAgPp1fZQoaAZoCWgPQwhYc4BgjntYQJSGlFKUaBVN6ANoFkdAlAct0q6OHXV9lChoBmgJaA9DCAjL2NDNKVZAlIaUUpRoFU3oA2gWR0CUCB3x4IKMdX2UKGgGaAloD0MI6gQ0EbZPYkCUhpRSlGgVTegDaBZHQJQL7XYlIEt1fZQoaAZoCWgPQwgr24e8ZZ5hQJSGlFKUaBVN6ANoFkdAlBDNUOuq3nV9lChoBmgJaA9DCK+xS1RvB1BAlIaUUpRoFU3oA2gWR0CUElwWFev7dX2UKGgGaAloD0MIZeJWQQx0O8CUhpRSlGgVS+RoFkdAlBiuBxxT9HV9lChoBmgJaA9DCFNb6iCvT2FAlIaUUpRoFU3oA2gWR0CUIDojfNzKdX2UKGgGaAloD0MId2ouNxhaP0CUhpRSlGgVTegDaBZHQJQm+ecx0uF1fZQoaAZoCWgPQwhuNeuM7xRTQJSGlFKUaBVN6ANoFkdAlDxgk9lmOHV9lChoBmgJaA9DCK8Hk+JjMWFAlIaUUpRoFU3oA2gWR0CUPSp+MIeHdX2UKGgGaAloD0MI2T15WKjCXkCUhpRSlGgVTegDaBZHQJQ+IRBeHBV1fZQoaAZoCWgPQwgLJZNTOzMXQJSGlFKUaBVNUwFoFkdAlD6UahpQDXV9lChoBmgJaA9DCG6mQjySZmhAlIaUUpRoFU1LAmgWR0CUXd1LamGedX2UKGgGaAloD0MIkrHa/L8iXECUhpRSlGgVTegDaBZHQJRfC0NSZSh1fZQoaAZoCWgPQwi9GwsKgyRYQJSGlFKUaBVN6ANoFkdAlGAosiB5HHV9lChoBmgJaA9DCD5ZMVwd6VdAlIaUUpRoFU3oA2gWR0CUYLm9g4OudX2UKGgGaAloD0MIJbA5B8/KYkCUhpRSlGgVTegDaBZHQJRg/IyTINp1fZQoaAZoCWgPQwh1kxgEVnVQQJSGlFKUaBVN6ANoFkdAlGRmDg62fHV9lChoBmgJaA9DCIWy8PW1z1pAlIaUUpRoFU3oA2gWR0CUbjjwx33YdX2UKGgGaAloD0MILuI7MestX0CUhpRSlGgVTegDaBZHQJRvzlGPPs11fZQoaAZoCWgPQwhUjV4NUJI2wJSGlFKUaBVNHQFoFkdAlHAPZuhsZnV9lChoBmgJaA9DCFa3ek56x0DAlIaUUpRoFUv8aBZHQJRwgbn5i3J1fZQoaAZoCWgPQwhIwr6dRLpOQJSGlFKUaBVN6ANoFkdAlHQln/T9bXV9lChoBmgJaA9DCNRlMbH5yF9AlIaUUpRoFU3oA2gWR0CUeeQxvegtdX2UKGgGaAloD0MIgGH5821DYkCUhpRSlGgVTegDaBZHQJR/0xFiKBN1fZQoaAZoCWgPQwhXPsvz4AhjQJSGlFKUaBVN6ANoFkdAlI0l01ZTynV9lChoBmgJaA9DCK2KcJNRRWJAlIaUUpRoFU3oA2gWR0CUoPF6zE75dX2UKGgGaAloD0MIwmhWtg9AWECUhpRSlGgVTegDaBZHQJShp52Qnx91fZQoaAZoCWgPQwgou5nRjx1qQJSGlFKUaBVNggNoFkdAlKHTNt65XnV9lChoBmgJaA9DCMU9lj50sWJAlIaUUpRoFU3oA2gWR0CUopQE6kqMdX2UKGgGaAloD0MIyorh6gDvWUCUhpRSlGgVTegDaBZHQJSi9BOYYzl1fZQoaAZoCWgPQwgmyAiocCthQJSGlFKUaBVN6ANoFkdAlML0kKNQ03V9lChoBmgJaA9DCNY73A4NHFNAlIaUUpRoFU3oA2gWR0CUxA8TzunddX2UKGgGaAloD0MIBDkoYaZ2X0CUhpRSlGgVTegDaBZHQJTJAGkep4t1fZQoaAZoCWgPQwiQiCmRRHM2QJSGlFKUaBVNEgFoFkdAlNAbIHTqjnV9lChoBmgJaA9DCDIh5pKq0TtAlIaUUpRoFU0lAWgWR0CU02dbgTAWdX2UKGgGaAloD0MIICqNmNnBX0CUhpRSlGgVTegDaBZHQJTUJgH/tIF1fZQoaAZoCWgPQwi8V61M+AVcQJSGlFKUaBVN6ANoFkdAlNXIDLbHqHV9lChoBmgJaA9DCD0nvW986VhAlIaUUpRoFU3oA2gWR0CU1gyXlbNbdX2UKGgGaAloD0MI7G0zFeLhV0CUhpRSlGgVTegDaBZHQJTWj/S6UaB1fZQoaAZoCWgPQwicUfNV8hJlQJSGlFKUaBVN6ANoFkdAlNpFaGHpKXV9lChoBmgJaA9DCMZOeAlOaFxAlIaUUpRoFU3oA2gWR0CU4G9vS+g2dX2UKGgGaAloD0MIICbhQh5ZPMCUhpRSlGgVTVMBaBZHQJThQHMUypJ1fZQoaAZoCWgPQwhcx7ji4kxXQJSGlFKUaBVN6ANoFkdAlOcYQOFxn3V9lChoBmgJaA9DCGDkZU0sREzAlIaUUpRoFU1eAWgWR0CU7fHTqjagdX2UKGgGaAloD0MIotPzbiwUQ8CUhpRSlGgVTSABaBZHQJTwH0h/y5J1fZQoaAZoCWgPQwgv98lRgOhgQJSGlFKUaBVN6ANoFkdAlPWWF8G9pXV9lChoBmgJaA9DCI4EGmzqy1pAlIaUUpRoFU3oA2gWR0CVDESPU8V6dX2UKGgGaAloD0MI/IugMZMgYUCUhpRSlGgVTegDaBZHQJUMeDRMN+d1fZQoaAZoCWgPQwhcdR2qKbNEQJSGlFKUaBVN6ANoFkdAlQ0+UMXrMXV9lChoBmgJaA9DCCYbD7bYhmNAlIaUUpRoFU3oA2gWR0CVLegGKQ7tdX2UKGgGaAloD0MIJNV3flHcYUCUhpRSlGgVTegDaBZHQJUvIpazNUx1fZQoaAZoCWgPQwjFAfT7/n5dQJSGlFKUaBVN6ANoFkdAlTz8MAmzB3V9lChoBmgJaA9DCEPIef8fQ2FAlIaUUpRoFU3oA2gWR0CVQKfgrH2idX2UKGgGaAloD0MITYV4JN4LYkCUhpRSlGgVTegDaBZHQJVDWIuXeFd1fZQoaAZoCWgPQwhs7BLVW3RiQJSGlFKUaBVN6ANoFkdAlUOoQJ5VwXV9lChoBmgJaA9DCB2taknHsGBAlIaUUpRoFU3oA2gWR0CVRCkLQXyidX2UKGgGaAloD0MIyaze4faKYUCUhpRSlGgVTegDaBZHQJVO06uGKyh1fZQoaAZoCWgPQwgfEr73Ny9YQJSGlFKUaBVN6ANoFkdAlU+XQ+lj3HV9lChoBmgJaA9DCGDkZU0s7DFAlIaUUpRoFU3oA2gWR0CVVUtXgccVdX2UKGgGaAloD0MILe3UXG6XYECUhpRSlGgVTegDaBZHQJVcTxb0OEx1fZQoaAZoCWgPQwj2C3bDtpliQJSGlFKUaBVN6ANoFkdAlV5hVAAyVXV9lChoBmgJaA9DCDxrt11oH1hAlIaUUpRoFU3oA2gWR0CVY1m6XjU/dX2UKGgGaAloD0MIOGqF6XvNK8CUhpRSlGgVTRcBaBZHQJVkdvCMxXZ1fZQoaAZoCWgPQwhnKy/5n1NgQJSGlFKUaBVN6ANoFkdAlXg4BJZntnV9lChoBmgJaA9DCEq05PG0+F1AlIaUUpRoFU3oA2gWR0CVeGTfBN21dX2UKGgGaAloD0MIH4XrUbgjYUCUhpRSlGgVTegDaBZHQJV5LdFfAsV1fZQoaAZoCWgPQwjcZb/udMJZQJSGlFKUaBVN6ANoFkdAlX61rEcbSHV9lChoBmgJaA9DCEeTizGwGFDAlIaUUpRoFU09AWgWR0CVf9R/mT1TdX2UKGgGaAloD0MIgEbp0r/aX0CUhpRSlGgVTegDaBZHQJV//jyWiUR1fZQoaAZoCWgPQwgc8PlhBPtnQJSGlFKUaBVNuwFoFkdAlZ7g1zhgmnV9lChoBmgJaA9DCHAmpguxn1xAlIaUUpRoFU3oA2gWR0CVqLJ9iMHbdX2UKGgGaAloD0MIqG4u/rZxWUCUhpRSlGgVTegDaBZHQJWr+35N47l1fZQoaAZoCWgPQwguHXOesWRiQJSGlFKUaBVN6ANoFkdAla46Ln9vTHV9lChoBmgJaA9DCInsgywL/mFAlIaUUpRoFU3oA2gWR0CVroDbrTpgdX2UKGgGaAloD0MIZsHEH0WIYkCUhpRSlGgVTegDaBZHQJWu7VkMCtB1fZQoaAZoCWgPQwhgH526cpZgQJSGlFKUaBVN6ANoFkdAlbkznRsuWnV9lChoBmgJaA9DCF1sWikERkdAlIaUUpRoFUvraBZHQJW+qdtl7MR1fZQoaAZoCWgPQwg1f0xr0+xZQJSGlFKUaBVN6ANoFkdAlb8gcLjPwHV9lChoBmgJaA9DCFclkX2Qd2JAlIaUUpRoFU3oA2gWR0CVxhKhtcfOdX2UKGgGaAloD0MI+Ddorz5oYUCUhpRSlGgVTegDaBZHQJXNT+tKZlZ1fZQoaAZoCWgPQwiFtTF2wrdeQJSGlFKUaBVN6ANoFkdAleOrVBlcyHV9lChoBmgJaA9DCMzuycPCQ2RAlIaUUpRoFU3oA2gWR0CV49udPLxJdX2UKGgGaAloD0MI/Knx0k1gYUCUhpRSlGgVTegDaBZHQJXktJcxCY11fZQoaAZoCWgPQwiVtrjGZ8osQJSGlFKUaBVNHwFoFkdAlee3DBMzuXV9lChoBmgJaA9DCFMGDmjpAGVAlIaUUpRoFU3oA2gWR0CV6kA+IMz/dX2UKGgGaAloD0MIJc6KqIkDZECUhpRSlGgVTegDaBZHQJXrYbKifxt1fZQoaAZoCWgPQwi0qiUd5Z5bQJSGlFKUaBVN6ANoFkdAleuOrlvIfnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:055bf8b0e73db9525971fb065a3aac393588be327d40d1d9b21a7dceb75c3ebe
|
3 |
+
size 144044
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcc884155f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcc88415680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcc88415710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcc884157a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcc88415830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcc884158c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcc88415950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcc884159e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcc88415a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcc88415b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcc88415b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fcc883e9300>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651710920.0202937,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMB20T1cI3m69Ur8uSKTcjYlDhy69o/atQAAgD8AAIA/APySPsymlz/8l449QRiFvrJidD5TFry9AAAAAAAAAABm7qa9f74nP4qfbz06KhG+ZLUwPdLzFj0AAAAAAAAAAFA5nj5cqXS8M7uDu7mXnjkB1rC9SnITOgAAgD8AAIA/Lf0gPszrSz/K11K9YYiNvpqRh7yrcxu8AAAAAAAAAABNcNc9iqOYP0mPMT5RMJi+10IXPmZy1D0AAAAAAAAAAHOjj732uAW6CeK0O5GqUDiGFDM7AsAOtwAAgD8AAIA/pr04PowCsz/50xM/aeVxvvUIFj7N3VY+AAAAAAAAAAAtii++HoKZP4qCFL+Aguy+zX2pvXK/Fb4AAAAAAAAAAM0CND0pUC26UX8oOz7yCLZ7CXs6qpJEugAAgD8AAIA/WoT5vVjdCz+vbo483doevvuJij2e7Qu9AAAAAAAAAACALYw9H03duUMW+TsRwY+2f2WvOfXijLUAAIA/AACAPwAUmzwKR1q5VjYjPE8zErYUVB+5o/IYtQAAgD8AAIA/2n7EPfYQa7oi2/o7de36tbWQFjtTdua0AACAPwAAgD/muuE9KQRYuo5tBDthbaE5Cnylu3oIeDkAAIA/AACAPwDduLwUOpG63siXu6evoTgUHS27/qcNOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL6LtmDptYECUhpRSlIwBbJRN6AOMAXSUR0CTwYD28IzFdX2UKGgGaAloD0MIb0kO2NXEN8CUhpRSlGgVTScBaBZHQJPBpsCT2WZ1fZQoaAZoCWgPQwgOh6WBH9FVQJSGlFKUaBVN6ANoFkdAk9F8vmHP/3V9lChoBmgJaA9DCF4qNuZ1SDJAlIaUUpRoFUvraBZHQJPUIuRLbpN1fZQoaAZoCWgPQwhJvDydK1InwJSGlFKUaBVNAgFoFkdAk/B60MPSUnV9lChoBmgJaA9DCAySPq2iWltAlIaUUpRoFU3oA2gWR0CT8VrnTy8SdX2UKGgGaAloD0MIt9PWiGCtWkCUhpRSlGgVTegDaBZHQJP2OFFlTWJ1fZQoaAZoCWgPQwh5zEBlfPRiQJSGlFKUaBVN6ANoFkdAk/daW1MM7XV9lChoBmgJaA9DCLOWAtL+0FtAlIaUUpRoFU3oA2gWR0CT9+KVY6n0dX2UKGgGaAloD0MI7wG6L2f8UkCUhpRSlGgVTegDaBZHQJP4J5X2dup1fZQoaAZoCWgPQwhBmrFoOiFFwJSGlFKUaBVLzmgWR0CT+3pR4yGjdX2UKGgGaAloD0MIr5Y7M8GYY0CUhpRSlGgVTegDaBZHQJQFgmdAgPp1fZQoaAZoCWgPQwhYc4BgjntYQJSGlFKUaBVN6ANoFkdAlAct0q6OHXV9lChoBmgJaA9DCAjL2NDNKVZAlIaUUpRoFU3oA2gWR0CUCB3x4IKMdX2UKGgGaAloD0MI6gQ0EbZPYkCUhpRSlGgVTegDaBZHQJQL7XYlIEt1fZQoaAZoCWgPQwgr24e8ZZ5hQJSGlFKUaBVN6ANoFkdAlBDNUOuq3nV9lChoBmgJaA9DCK+xS1RvB1BAlIaUUpRoFU3oA2gWR0CUElwWFev7dX2UKGgGaAloD0MIZeJWQQx0O8CUhpRSlGgVS+RoFkdAlBiuBxxT9HV9lChoBmgJaA9DCFNb6iCvT2FAlIaUUpRoFU3oA2gWR0CUIDojfNzKdX2UKGgGaAloD0MId2ouNxhaP0CUhpRSlGgVTegDaBZHQJQm+ecx0uF1fZQoaAZoCWgPQwhuNeuM7xRTQJSGlFKUaBVN6ANoFkdAlDxgk9lmOHV9lChoBmgJaA9DCK8Hk+JjMWFAlIaUUpRoFU3oA2gWR0CUPSp+MIeHdX2UKGgGaAloD0MI2T15WKjCXkCUhpRSlGgVTegDaBZHQJQ+IRBeHBV1fZQoaAZoCWgPQwgLJZNTOzMXQJSGlFKUaBVNUwFoFkdAlD6UahpQDXV9lChoBmgJaA9DCG6mQjySZmhAlIaUUpRoFU1LAmgWR0CUXd1LamGedX2UKGgGaAloD0MIkrHa/L8iXECUhpRSlGgVTegDaBZHQJRfC0NSZSh1fZQoaAZoCWgPQwi9GwsKgyRYQJSGlFKUaBVN6ANoFkdAlGAosiB5HHV9lChoBmgJaA9DCD5ZMVwd6VdAlIaUUpRoFU3oA2gWR0CUYLm9g4OudX2UKGgGaAloD0MIJbA5B8/KYkCUhpRSlGgVTegDaBZHQJRg/IyTINp1fZQoaAZoCWgPQwh1kxgEVnVQQJSGlFKUaBVN6ANoFkdAlGRmDg62fHV9lChoBmgJaA9DCIWy8PW1z1pAlIaUUpRoFU3oA2gWR0CUbjjwx33YdX2UKGgGaAloD0MILuI7MestX0CUhpRSlGgVTegDaBZHQJRvzlGPPs11fZQoaAZoCWgPQwhUjV4NUJI2wJSGlFKUaBVNHQFoFkdAlHAPZuhsZnV9lChoBmgJaA9DCFa3ek56x0DAlIaUUpRoFUv8aBZHQJRwgbn5i3J1fZQoaAZoCWgPQwhIwr6dRLpOQJSGlFKUaBVN6ANoFkdAlHQln/T9bXV9lChoBmgJaA9DCNRlMbH5yF9AlIaUUpRoFU3oA2gWR0CUeeQxvegtdX2UKGgGaAloD0MIgGH5821DYkCUhpRSlGgVTegDaBZHQJR/0xFiKBN1fZQoaAZoCWgPQwhXPsvz4AhjQJSGlFKUaBVN6ANoFkdAlI0l01ZTynV9lChoBmgJaA9DCK2KcJNRRWJAlIaUUpRoFU3oA2gWR0CUoPF6zE75dX2UKGgGaAloD0MIwmhWtg9AWECUhpRSlGgVTegDaBZHQJShp52Qnx91fZQoaAZoCWgPQwgou5nRjx1qQJSGlFKUaBVNggNoFkdAlKHTNt65XnV9lChoBmgJaA9DCMU9lj50sWJAlIaUUpRoFU3oA2gWR0CUopQE6kqMdX2UKGgGaAloD0MIyorh6gDvWUCUhpRSlGgVTegDaBZHQJSi9BOYYzl1fZQoaAZoCWgPQwgmyAiocCthQJSGlFKUaBVN6ANoFkdAlML0kKNQ03V9lChoBmgJaA9DCNY73A4NHFNAlIaUUpRoFU3oA2gWR0CUxA8TzunddX2UKGgGaAloD0MIBDkoYaZ2X0CUhpRSlGgVTegDaBZHQJTJAGkep4t1fZQoaAZoCWgPQwiQiCmRRHM2QJSGlFKUaBVNEgFoFkdAlNAbIHTqjnV9lChoBmgJaA9DCDIh5pKq0TtAlIaUUpRoFU0lAWgWR0CU02dbgTAWdX2UKGgGaAloD0MIICqNmNnBX0CUhpRSlGgVTegDaBZHQJTUJgH/tIF1fZQoaAZoCWgPQwi8V61M+AVcQJSGlFKUaBVN6ANoFkdAlNXIDLbHqHV9lChoBmgJaA9DCD0nvW986VhAlIaUUpRoFU3oA2gWR0CU1gyXlbNbdX2UKGgGaAloD0MI7G0zFeLhV0CUhpRSlGgVTegDaBZHQJTWj/S6UaB1fZQoaAZoCWgPQwicUfNV8hJlQJSGlFKUaBVN6ANoFkdAlNpFaGHpKXV9lChoBmgJaA9DCMZOeAlOaFxAlIaUUpRoFU3oA2gWR0CU4G9vS+g2dX2UKGgGaAloD0MIICbhQh5ZPMCUhpRSlGgVTVMBaBZHQJThQHMUypJ1fZQoaAZoCWgPQwhcx7ji4kxXQJSGlFKUaBVN6ANoFkdAlOcYQOFxn3V9lChoBmgJaA9DCGDkZU0sREzAlIaUUpRoFU1eAWgWR0CU7fHTqjagdX2UKGgGaAloD0MIotPzbiwUQ8CUhpRSlGgVTSABaBZHQJTwH0h/y5J1fZQoaAZoCWgPQwgv98lRgOhgQJSGlFKUaBVN6ANoFkdAlPWWF8G9pXV9lChoBmgJaA9DCI4EGmzqy1pAlIaUUpRoFU3oA2gWR0CVDESPU8V6dX2UKGgGaAloD0MI/IugMZMgYUCUhpRSlGgVTegDaBZHQJUMeDRMN+d1fZQoaAZoCWgPQwhcdR2qKbNEQJSGlFKUaBVN6ANoFkdAlQ0+UMXrMXV9lChoBmgJaA9DCCYbD7bYhmNAlIaUUpRoFU3oA2gWR0CVLegGKQ7tdX2UKGgGaAloD0MIJNV3flHcYUCUhpRSlGgVTegDaBZHQJUvIpazNUx1fZQoaAZoCWgPQwjFAfT7/n5dQJSGlFKUaBVN6ANoFkdAlTz8MAmzB3V9lChoBmgJaA9DCEPIef8fQ2FAlIaUUpRoFU3oA2gWR0CVQKfgrH2idX2UKGgGaAloD0MITYV4JN4LYkCUhpRSlGgVTegDaBZHQJVDWIuXeFd1fZQoaAZoCWgPQwhs7BLVW3RiQJSGlFKUaBVN6ANoFkdAlUOoQJ5VwXV9lChoBmgJaA9DCB2taknHsGBAlIaUUpRoFU3oA2gWR0CVRCkLQXyidX2UKGgGaAloD0MIyaze4faKYUCUhpRSlGgVTegDaBZHQJVO06uGKyh1fZQoaAZoCWgPQwgfEr73Ny9YQJSGlFKUaBVN6ANoFkdAlU+XQ+lj3HV9lChoBmgJaA9DCGDkZU0s7DFAlIaUUpRoFU3oA2gWR0CVVUtXgccVdX2UKGgGaAloD0MILe3UXG6XYECUhpRSlGgVTegDaBZHQJVcTxb0OEx1fZQoaAZoCWgPQwj2C3bDtpliQJSGlFKUaBVN6ANoFkdAlV5hVAAyVXV9lChoBmgJaA9DCDxrt11oH1hAlIaUUpRoFU3oA2gWR0CVY1m6XjU/dX2UKGgGaAloD0MIOGqF6XvNK8CUhpRSlGgVTRcBaBZHQJVkdvCMxXZ1fZQoaAZoCWgPQwhnKy/5n1NgQJSGlFKUaBVN6ANoFkdAlXg4BJZntnV9lChoBmgJaA9DCEq05PG0+F1AlIaUUpRoFU3oA2gWR0CVeGTfBN21dX2UKGgGaAloD0MIH4XrUbgjYUCUhpRSlGgVTegDaBZHQJV5LdFfAsV1fZQoaAZoCWgPQwjcZb/udMJZQJSGlFKUaBVN6ANoFkdAlX61rEcbSHV9lChoBmgJaA9DCEeTizGwGFDAlIaUUpRoFU09AWgWR0CVf9R/mT1TdX2UKGgGaAloD0MIgEbp0r/aX0CUhpRSlGgVTegDaBZHQJV//jyWiUR1fZQoaAZoCWgPQwgc8PlhBPtnQJSGlFKUaBVNuwFoFkdAlZ7g1zhgmnV9lChoBmgJaA9DCHAmpguxn1xAlIaUUpRoFU3oA2gWR0CVqLJ9iMHbdX2UKGgGaAloD0MIqG4u/rZxWUCUhpRSlGgVTegDaBZHQJWr+35N47l1fZQoaAZoCWgPQwguHXOesWRiQJSGlFKUaBVN6ANoFkdAla46Ln9vTHV9lChoBmgJaA9DCInsgywL/mFAlIaUUpRoFU3oA2gWR0CVroDbrTpgdX2UKGgGaAloD0MIZsHEH0WIYkCUhpRSlGgVTegDaBZHQJWu7VkMCtB1fZQoaAZoCWgPQwhgH526cpZgQJSGlFKUaBVN6ANoFkdAlbkznRsuWnV9lChoBmgJaA9DCF1sWikERkdAlIaUUpRoFUvraBZHQJW+qdtl7MR1fZQoaAZoCWgPQwg1f0xr0+xZQJSGlFKUaBVN6ANoFkdAlb8gcLjPwHV9lChoBmgJaA9DCFclkX2Qd2JAlIaUUpRoFU3oA2gWR0CVxhKhtcfOdX2UKGgGaAloD0MI+Ddorz5oYUCUhpRSlGgVTegDaBZHQJXNT+tKZlZ1fZQoaAZoCWgPQwiFtTF2wrdeQJSGlFKUaBVN6ANoFkdAleOrVBlcyHV9lChoBmgJaA9DCMzuycPCQ2RAlIaUUpRoFU3oA2gWR0CV49udPLxJdX2UKGgGaAloD0MI/Knx0k1gYUCUhpRSlGgVTegDaBZHQJXktJcxCY11fZQoaAZoCWgPQwiVtrjGZ8osQJSGlFKUaBVNHwFoFkdAlee3DBMzuXV9lChoBmgJaA9DCFMGDmjpAGVAlIaUUpRoFU3oA2gWR0CV6kA+IMz/dX2UKGgGaAloD0MIJc6KqIkDZECUhpRSlGgVTegDaBZHQJXrYbKifxt1fZQoaAZoCWgPQwi0qiUd5Z5bQJSGlFKUaBVN6ANoFkdAleuOrlvIfnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc2a296ded231e600b66cd500b11d75e0ebebecb2de019e5d8de9498ff5eb4d5
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb9523961a4ca2d359de01d310704a961f5ba6e3536c5c89d6b680c436711b11
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ef097a8757a38d7f998f49cce7cc8190fb7fd8f69cbf392476912de3edc4203
|
3 |
+
size 268884
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 94.9844215480658, "std_reward": 95.29956269203586, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T01:09:20.324537"}
|