File size: 48,614 Bytes
5e1c670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
{
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# DAEDRA: Determining Adverse Event Disposition for Regulatory Affairs\n",
        "\n",
        "DAEDRA is a language model intended to predict the disposition (outcome) of an adverse event based on the text of the event report. Intended to be used to classify reports in passive reporting systems, it is trained on the [VAERS](https://vaers.hhs.gov/) dataset, which contains reports of adverse events following vaccination in the United States."
      ],
      "metadata": {}
    },
    {
      "cell_type": "code",
      "source": [
        "%pip install accelerate -U"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": "Requirement already satisfied: accelerate in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.26.1)\nRequirement already satisfied: torch>=1.10.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (1.12.0)\nRequirement already satisfied: packaging>=20.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (23.1)\nRequirement already satisfied: numpy>=1.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (1.23.5)\nRequirement already satisfied: pyyaml in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (6.0)\nRequirement already satisfied: psutil in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (5.9.5)\nRequirement already satisfied: safetensors>=0.3.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (0.4.2)\nRequirement already satisfied: huggingface-hub in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from accelerate) (0.20.3)\nRequirement already satisfied: typing_extensions in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from torch>=1.10.0->accelerate) (4.6.3)\nRequirement already satisfied: tqdm>=4.42.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (4.65.0)\nRequirement already satisfied: filelock in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (3.13.1)\nRequirement already satisfied: requests in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (2.31.0)\nRequirement already satisfied: fsspec>=2023.5.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from huggingface-hub->accelerate) (2023.10.0)\nRequirement already satisfied: idna<4,>=2.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (3.4)\nRequirement already satisfied: charset-normalizer<4,>=2 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (3.1.0)\nRequirement already satisfied: certifi>=2017.4.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (2023.5.7)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->huggingface-hub->accelerate) (1.26.16)\nNote: you may need to restart the kernel to use updated packages.\n"
        }
      ],
      "execution_count": 1,
      "metadata": {
        "gather": {
          "logged": 1706475754655
        },
        "nteract": {
          "transient": {
            "deleting": false
          }
        },
        "tags": []
      }
    },
    {
      "cell_type": "code",
      "source": [
        "%pip install transformers datasets shap watermark wandb evaluate codecarbon"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": "Requirement already satisfied: transformers in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (4.37.1)\nRequirement already satisfied: datasets in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (2.16.1)\nRequirement already satisfied: shap in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.44.1)\nRequirement already satisfied: watermark in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (2.4.3)\nRequirement already satisfied: wandb in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.16.2)\nRequirement already satisfied: evaluate in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (0.4.1)\nRequirement already satisfied: codecarbon in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (2.3.3)\nRequirement already satisfied: safetensors>=0.3.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (0.4.2)\nRequirement already satisfied: regex!=2019.12.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (2023.12.25)\nRequirement already satisfied: filelock in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (3.13.1)\nRequirement already satisfied: pyyaml>=5.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (6.0)\nRequirement already satisfied: numpy>=1.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (1.23.5)\nRequirement already satisfied: packaging>=20.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (23.1)\nRequirement already satisfied: tqdm>=4.27 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (4.65.0)\nRequirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (0.20.3)\nRequirement already satisfied: tokenizers<0.19,>=0.14 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (0.15.1)\nRequirement already satisfied: requests in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from transformers) (2.31.0)\nRequirement already satisfied: pyarrow>=8.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (9.0.0)\nRequirement already satisfied: aiohttp in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (3.9.1)\nRequirement already satisfied: xxhash in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (3.4.1)\nRequirement already satisfied: multiprocess in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (0.70.15)\nRequirement already satisfied: pyarrow-hotfix in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (0.6)\nRequirement already satisfied: pandas in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (2.0.2)\nRequirement already satisfied: dill<0.3.8,>=0.3.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (0.3.7)\nRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from datasets) (2023.10.0)\nRequirement already satisfied: scipy in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (1.10.1)\nRequirement already satisfied: slicer==0.0.7 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (0.0.7)\nRequirement already satisfied: cloudpickle in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (2.2.1)\nRequirement already satisfied: scikit-learn in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (1.2.2)\nRequirement already satisfied: numba in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from shap) (0.58.1)\nRequirement already satisfied: importlib-metadata>=1.4 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from watermark) (6.7.0)\nRequirement already satisfied: ipython>=6.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from watermark) (8.12.2)\nRequirement already satisfied: setuptools in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from watermark) (65.6.3)\nRequirement already satisfied: protobuf!=4.21.0,<5,>=3.12.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (3.19.6)\nRequirement already satisfied: setproctitle in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (1.3.3)\nRequirement already satisfied: psutil>=5.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (5.9.5)\nRequirement already satisfied: sentry-sdk>=1.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (1.39.2)\nRequirement already satisfied: typing-extensions in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (4.6.3)\nRequirement already satisfied: Click!=8.0.0,>=7.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (8.1.3)\nRequirement already satisfied: docker-pycreds>=0.4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (0.4.0)\nRequirement already satisfied: appdirs>=1.4.3 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (1.4.4)\nRequirement already satisfied: GitPython!=3.1.29,>=1.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from wandb) (3.1.31)\nRequirement already satisfied: responses<0.19 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from evaluate) (0.18.0)\nRequirement already satisfied: pynvml in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (11.5.0)\nRequirement already satisfied: py-cpuinfo in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (9.0.0)\nRequirement already satisfied: prometheus-client in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (0.19.0)\nRequirement already satisfied: arrow in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (1.3.0)\nRequirement already satisfied: rapidfuzz in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from codecarbon) (3.6.1)\nRequirement already satisfied: six>=1.4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from docker-pycreds>=0.4.0->wandb) (1.16.0)\nRequirement already satisfied: yarl<2.0,>=1.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (1.9.4)\nRequirement already satisfied: async-timeout<5.0,>=4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (4.0.3)\nRequirement already satisfied: aiosignal>=1.1.2 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (1.3.1)\nRequirement already satisfied: multidict<7.0,>=4.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (6.0.4)\nRequirement already satisfied: frozenlist>=1.1.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (1.4.1)\nRequirement already satisfied: attrs>=17.3.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from aiohttp->datasets) (23.1.0)\nRequirement already satisfied: gitdb<5,>=4.0.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from GitPython!=3.1.29,>=1.0.0->wandb) (4.0.10)\nRequirement already satisfied: zipp>=0.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from importlib-metadata>=1.4->watermark) (3.15.0)\nRequirement already satisfied: pygments>=2.4.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (2.15.1)\nRequirement already satisfied: decorator in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (5.1.1)\nRequirement already satisfied: jedi>=0.16 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.18.2)\nRequirement already satisfied: pexpect>4.3 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (4.8.0)\nRequirement already satisfied: matplotlib-inline in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.1.6)\nRequirement already satisfied: pickleshare in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.7.5)\nRequirement already satisfied: stack-data in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.6.2)\nRequirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (3.0.30)\nRequirement already satisfied: backcall in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (0.2.0)\nRequirement already satisfied: traitlets>=5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from ipython>=6.0->watermark) (5.9.0)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (1.26.16)\nRequirement already satisfied: idna<4,>=2.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (3.4)\nRequirement already satisfied: charset-normalizer<4,>=2 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (3.1.0)\nRequirement already satisfied: certifi>=2017.4.17 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from requests->transformers) (2023.5.7)\nRequirement already satisfied: python-dateutil>=2.7.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from arrow->codecarbon) (2.8.2)\nRequirement already satisfied: types-python-dateutil>=2.8.10 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from arrow->codecarbon) (2.8.19.20240106)\nRequirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from numba->shap) (0.41.1)\nRequirement already satisfied: pytz>=2020.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from pandas->datasets) (2023.3)\nRequirement already satisfied: tzdata>=2022.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from pandas->datasets) (2023.3)\nRequirement already satisfied: threadpoolctl>=2.0.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from scikit-learn->shap) (3.1.0)\nRequirement already satisfied: joblib>=1.1.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from scikit-learn->shap) (1.2.0)\nRequirement already satisfied: smmap<6,>=3.0.1 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from gitdb<5,>=4.0.1->GitPython!=3.1.29,>=1.0.0->wandb) (5.0.0)\nRequirement already satisfied: parso<0.9.0,>=0.8.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from jedi>=0.16->ipython>=6.0->watermark) (0.8.3)\nRequirement already satisfied: ptyprocess>=0.5 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from pexpect>4.3->ipython>=6.0->watermark) (0.7.0)\nRequirement already satisfied: wcwidth in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.0->watermark) (0.2.6)\nRequirement already satisfied: asttokens>=2.1.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from stack-data->ipython>=6.0->watermark) (2.2.1)\nRequirement already satisfied: pure-eval in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from stack-data->ipython>=6.0->watermark) (0.2.2)\nRequirement already satisfied: executing>=1.2.0 in /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages (from stack-data->ipython>=6.0->watermark) (1.2.0)\nNote: you may need to restart the kernel to use updated packages.\n"
        }
      ],
      "execution_count": 2,
      "metadata": {
        "nteract": {
          "transient": {
            "deleting": false
          }
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import pandas as pd\n",
        "import numpy as np\n",
        "import torch\n",
        "import os\n",
        "from typing import List, Union\n",
        "from transformers import AutoTokenizer, Trainer, AutoModelForSequenceClassification, TrainingArguments, DataCollatorWithPadding, pipeline\n",
        "from datasets import load_dataset, Dataset, DatasetDict\n",
        "import shap\n",
        "import wandb\n",
        "import evaluate\n",
        "from codecarbon import EmissionsTracker\n",
        "import logging\n",
        "\n",
        "wandb.finish()\n",
        "\n",
        "logging.getLogger('codecarbon').propagate = False\n",
        "\n",
        "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
        "tracker = EmissionsTracker()\n",
        "\n",
        "%load_ext watermark"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": "/anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n  from .autonotebook import tqdm as notebook_tqdm\n2024-01-29 04:43:58.191236: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n2024-01-29 04:43:59.182154: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n2024-01-29 04:43:59.182291: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n2024-01-29 04:43:59.182304: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n[codecarbon INFO @ 04:44:02] [setup] RAM Tracking...\n[codecarbon INFO @ 04:44:02] [setup] GPU Tracking...\n[codecarbon INFO @ 04:44:02] Tracking Nvidia GPU via pynvml\n[codecarbon INFO @ 04:44:02] [setup] CPU Tracking...\n[codecarbon WARNING @ 04:44:02] No CPU tracking mode found. Falling back on CPU constant mode.\n[codecarbon WARNING @ 04:44:03] We saw that you have a Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz but we don't know it. Please contact us.\n[codecarbon INFO @ 04:44:03] CPU Model on constant consumption mode: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz\n[codecarbon INFO @ 04:44:03] >>> Tracker's metadata:\n[codecarbon INFO @ 04:44:03]   Platform system: Linux-5.15.0-1040-azure-x86_64-with-glibc2.10\n[codecarbon INFO @ 04:44:03]   Python version: 3.8.5\n[codecarbon INFO @ 04:44:03]   CodeCarbon version: 2.3.3\n[codecarbon INFO @ 04:44:03]   Available RAM : 440.883 GB\n[codecarbon INFO @ 04:44:03]   CPU count: 24\n[codecarbon INFO @ 04:44:03]   CPU model: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz\n[codecarbon INFO @ 04:44:03]   GPU count: 4\n[codecarbon INFO @ 04:44:03]   GPU model: 4 x Tesla V100-PCIE-16GB\n[codecarbon WARNING @ 04:44:03] Cloud provider 'azure' do not publish electricity carbon intensity. Using country value instead.\n"
        }
      ],
      "execution_count": 3,
      "metadata": {
        "datalore": {
          "hide_input_from_viewers": false,
          "hide_output_from_viewers": false,
          "node_id": "caZjjFP0OyQNMVgZDiwswE",
          "report_properties": {
            "rowId": "un8W7ez7ZwoGb5Co6nydEV"
          },
          "type": "CODE"
        },
        "gather": {
          "logged": 1706503443742
        },
        "tags": []
      }
    },
    {
      "cell_type": "code",
      "source": [
        "device: str = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
        "\n",
        "SEED: int = 42\n",
        "\n",
        "BATCH_SIZE: int = 32\n",
        "EPOCHS: int = 5\n",
        "model_ckpt: str = \"distilbert-base-uncased\"\n",
        "\n",
        "# WandB configuration\n",
        "os.environ[\"WANDB_PROJECT\"] = \"DAEDRA multiclass model training\" \n",
        "os.environ[\"WANDB_LOG_MODEL\"] = \"checkpoint\"  # log all model checkpoints\n",
        "os.environ[\"WANDB_NOTEBOOK_NAME\"] = \"DAEDRA.ipynb\""
      ],
      "outputs": [],
      "execution_count": 4,
      "metadata": {
        "collapsed": false,
        "gather": {
          "logged": 1706503443899
        },
        "jupyter": {
          "outputs_hidden": false
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "%watermark --iversion"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": "shap    : 0.44.1\nnumpy   : 1.23.5\npandas  : 2.0.2\nlogging : 0.5.1.2\ntorch   : 1.12.0\nevaluate: 0.4.1\nwandb   : 0.16.2\nre      : 2.2.1\n\n"
        }
      ],
      "execution_count": 5,
      "metadata": {
        "collapsed": false,
        "jupyter": {
          "outputs_hidden": false
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!nvidia-smi"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": "Mon Jan 29 04:44:03 2024       \r\n+---------------------------------------------------------------------------------------+\r\n| NVIDIA-SMI 535.129.03             Driver Version: 535.129.03   CUDA Version: 12.2     |\r\n|-----------------------------------------+----------------------+----------------------+\r\n| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |\r\n| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |\r\n|                                         |                      |               MIG M. |\r\n|=========================================+======================+======================|\r\n|   0  Tesla V100-PCIE-16GB           Off | 00000001:00:00.0 Off |                  Off |\r\n| N/A   26C    P0              25W / 250W |      4MiB / 16384MiB |      0%      Default |\r\n|                                         |                      |                  N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n|   1  Tesla V100-PCIE-16GB           Off | 00000002:00:00.0 Off |                  Off |\r\n| N/A   25C    P0              23W / 250W |      4MiB / 16384MiB |      0%      Default |\r\n|                                         |                      |                  N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n|   2  Tesla V100-PCIE-16GB           Off | 00000003:00:00.0 Off |                  Off |\r\n| N/A   26C    P0              25W / 250W |      4MiB / 16384MiB |      0%      Default |\r\n|                                         |                      |                  N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n|   3  Tesla V100-PCIE-16GB           Off | 00000004:00:00.0 Off |                  Off |\r\n| N/A   27C    P0              25W / 250W |      4MiB / 16384MiB |      0%      Default |\r\n|                                         |                      |                  N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n                                                                                         \r\n+---------------------------------------------------------------------------------------+\r\n| Processes:                                                                            |\r\n|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |\r\n|        ID   ID                                                             Usage      |\r\n|=======================================================================================|\r\n|  No running processes found                                                           |\r\n+---------------------------------------------------------------------------------------+\r\n"
        }
      ],
      "execution_count": 6,
      "metadata": {
        "datalore": {
          "hide_input_from_viewers": true,
          "hide_output_from_viewers": true,
          "node_id": "UU2oOJhwbIualogG1YyCMd",
          "type": "CODE"
        }
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Loading the data set"
      ],
      "metadata": {
        "datalore": {
          "hide_input_from_viewers": false,
          "hide_output_from_viewers": false,
          "node_id": "t45KHugmcPVaO0nuk8tGJ9",
          "report_properties": {
            "rowId": "40nN9Hvgi1clHNV5RAemI5"
          },
          "type": "MD"
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "dataset = load_dataset(\"chrisvoncsefalvay/vaers-outcomes\")"
      ],
      "outputs": [],
      "execution_count": 7,
      "metadata": {
        "collapsed": false,
        "gather": {
          "logged": 1706503446033
        },
        "jupyter": {
          "outputs_hidden": false
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "dataset"
      ],
      "outputs": [
        {
          "output_type": "execute_result",
          "execution_count": 8,
          "data": {
            "text/plain": "DatasetDict({\n    train: Dataset({\n        features: ['id', 'text', 'label'],\n        num_rows: 1270444\n    })\n    test: Dataset({\n        features: ['id', 'text', 'label'],\n        num_rows: 272238\n    })\n    val: Dataset({\n        features: ['id', 'text', 'label'],\n        num_rows: 272238\n    })\n})"
          },
          "metadata": {}
        }
      ],
      "execution_count": 8,
      "metadata": {
        "collapsed": false,
        "gather": {
          "logged": 1706503446252
        },
        "jupyter": {
          "outputs_hidden": false,
          "source_hidden": false
        },
        "nteract": {
          "transient": {
            "deleting": false
          }
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "SUBSAMPLING = 1.0\n",
        "\n",
        "if SUBSAMPLING < 1:\n",
        "    _ = DatasetDict()\n",
        "    for each in dataset.keys():\n",
        "        _[each] = dataset[each].shuffle(seed=SEED).select(range(int(len(dataset[each]) * SUBSAMPLING)))\n",
        "\n",
        "    dataset = _"
      ],
      "outputs": [],
      "execution_count": 9,
      "metadata": {
        "gather": {
          "logged": 1706503446498
        }
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Tokenisation and encoding"
      ],
      "metadata": {}
    },
    {
      "cell_type": "code",
      "source": [
        "def encode_ds(ds: Union[Dataset, DatasetDict], tokenizer_model: str = model_ckpt) -> Union[Dataset, DatasetDict]:\n",
        "    return ds_enc"
      ],
      "outputs": [],
      "execution_count": 10,
      "metadata": {
        "gather": {
          "logged": 1706503446633
        }
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Evaluation metrics"
      ],
      "metadata": {}
    },
    {
      "cell_type": "code",
      "source": [
        "accuracy = evaluate.load(\"accuracy\")\n",
        "precision, recall = evaluate.load(\"precision\"), evaluate.load(\"recall\")\n",
        "f1 = evaluate.load(\"f1\")"
      ],
      "outputs": [],
      "execution_count": 11,
      "metadata": {
        "gather": {
          "logged": 1706503446863
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "def compute_metrics(eval_pred):\n",
        "    predictions, labels = eval_pred\n",
        "    predictions = np.argmax(predictions, axis=1)\n",
        "    return {\n",
        "        'accuracy': accuracy.compute(predictions=predictions, references=labels)[\"accuracy\"],\n",
        "        'precision_macroaverage': precision.compute(predictions=predictions, references=labels, average='macro')[\"precision\"],\n",
        "        'precision_microaverage': precision.compute(predictions=predictions, references=labels, average='micro')[\"precision\"],\n",
        "        'recall_macroaverage': recall.compute(predictions=predictions, references=labels, average='macro')[\"recall\"],\n",
        "        'recall_microaverage': recall.compute(predictions=predictions, references=labels, average='micro')[\"recall\"],\n",
        "        'f1_microaverage': f1.compute(predictions=predictions, references=labels, average='micro')[\"f1\"]\n",
        "    }"
      ],
      "outputs": [],
      "execution_count": 12,
      "metadata": {
        "gather": {
          "logged": 1706503447004
        }
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Training"
      ],
      "metadata": {}
    },
    {
      "cell_type": "markdown",
      "source": [
        "We specify a label map – this has to be done manually, even if `Datasets` has a function for it, as `AutoModelForSequenceClassification` requires an object with a length :("
      ],
      "metadata": {}
    },
    {
      "cell_type": "code",
      "source": [
        "label_map = {i: label for i, label in enumerate(dataset[\"test\"].features[\"label\"].names)}"
      ],
      "outputs": [],
      "execution_count": 13,
      "metadata": {
        "gather": {
          "logged": 1706503447186
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "tokenizer = AutoTokenizer.from_pretrained(model_ckpt)\n",
        "\n",
        "cols = dataset[\"train\"].column_names\n",
        "cols.remove(\"label\")\n",
        "ds_enc = dataset.map(lambda x: tokenizer(x[\"text\"], truncation=True), batched=True, remove_columns=cols)\n"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": "Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 272238/272238 [01:45<00:00, 2592.04 examples/s]\n"
        }
      ],
      "execution_count": 14,
      "metadata": {
        "gather": {
          "logged": 1706503552083
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "model = AutoModelForSequenceClassification.from_pretrained(model_ckpt, \n",
        "    num_labels=len(dataset[\"test\"].features[\"label\"].names), \n",
        "    id2label=label_map, \n",
        "    label2id={v:k for k,v in label_map.items()})\n",
        "\n",
        "args = TrainingArguments(\n",
        "    output_dir=\"vaers\",\n",
        "    evaluation_strategy=\"epoch\",\n",
        "    save_strategy=\"epoch\",\n",
        "    learning_rate=2e-5,\n",
        "    per_device_train_batch_size=BATCH_SIZE,\n",
        "    per_device_eval_batch_size=BATCH_SIZE,\n",
        "    num_train_epochs=EPOCHS,\n",
        "    weight_decay=.01,\n",
        "    logging_steps=1,\n",
        "    load_best_model_at_end=True,\n",
        "    run_name=f\"daedra-training\",\n",
        "    report_to=[\"wandb\"])\n",
        "\n",
        "trainer = Trainer(\n",
        "        model=model,\n",
        "        args=args,\n",
        "        train_dataset=ds_enc[\"train\"],\n",
        "        eval_dataset=ds_enc[\"test\"],\n",
        "        tokenizer=tokenizer,\n",
        "        compute_metrics=compute_metrics)"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
        }
      ],
      "execution_count": 15,
      "metadata": {
        "gather": {
          "logged": 1706503554669
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "if SUBSAMPLING != 1.0:\n",
        "    wandb_tag: List[str] = [f\"subsample-{SUBSAMPLING}\"]\n",
        "else:\n",
        "    wandb_tag: List[str] = [f\"full_sample\"]\n",
        "\n",
        "wandb_tag.append(f\"batch_size-{BATCH_SIZE}\")\n",
        "wandb_tag.append(f\"base:{model_ckpt}\")\n",
        "    \n",
        "wandb.init(name=\"daedra_training_run\", tags=wandb_tag, magic=True)"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mchrisvoncsefalvay\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m wandb.init() arguments ignored because wandb magic has already been initialized\n"
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Tracking run with wandb version 0.16.2"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Run data is saved locally in <code>/mnt/batch/tasks/shared/LS_root/mounts/clusters/daedra-hptrain-cvc/code/Users/kristof.csefalvay/daedra/notebooks/wandb/run-20240129_044555-kjhyoltp</code>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Syncing run <strong><a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/kjhyoltp' target=\"_blank\">daedra_training_run</a></strong> to <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": " View project at <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training' target=\"_blank\">https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training</a>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": " View run at <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/kjhyoltp' target=\"_blank\">https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/kjhyoltp</a>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Finishing last run (ID:kjhyoltp) before initializing another..."
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "W&B sync reduced upload amount by 26.5%             "
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": " View run <strong style=\"color:#cdcd00\">daedra_training_run</strong> at: <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/kjhyoltp' target=\"_blank\">https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/kjhyoltp</a><br/> View job at <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/jobs/QXJ0aWZhY3RDb2xsZWN0aW9uOjEzNDcyMTQwMw==/version_details/v1' target=\"_blank\">https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/jobs/QXJ0aWZhY3RDb2xsZWN0aW9uOjEzNDcyMTQwMw==/version_details/v1</a><br/>Synced 5 W&B file(s), 0 media file(s), 2 artifact file(s) and 0 other file(s)"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Find logs at: <code>./wandb/run-20240129_044555-kjhyoltp/logs</code>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Successfully finished last run (ID:kjhyoltp). Initializing new run:<br/>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Tracking run with wandb version 0.16.2"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Run data is saved locally in <code>/mnt/batch/tasks/shared/LS_root/mounts/clusters/daedra-hptrain-cvc/code/Users/kristof.csefalvay/daedra/notebooks/wandb/run-20240129_044558-ed51hqn6</code>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "Syncing run <strong><a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/ed51hqn6' target=\"_blank\">daedra_training_run</a></strong> to <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": " View project at <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training' target=\"_blank\">https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training</a>"
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": " View run at <a href='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/ed51hqn6' target=\"_blank\">https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/ed51hqn6</a>"
          },
          "metadata": {}
        },
        {
          "output_type": "execute_result",
          "execution_count": 16,
          "data": {
            "text/html": "<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/chrisvoncsefalvay/DAEDRA%20multiclass%20model%20training/runs/ed51hqn6?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>",
            "text/plain": "<wandb.sdk.wandb_run.Run at 0x7f19d09fdbe0>"
          },
          "metadata": {}
        }
      ],
      "execution_count": 16,
      "metadata": {
        "gather": {
          "logged": 1706503566090
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "tracker.start()\n",
        "trainer.train()\n",
        "tracker.stop()\n"
      ],
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": "Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n"
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": "<IPython.core.display.HTML object>",
            "text/html": "\n    <div>\n      \n      <progress value='183' max='49630' style='width:300px; height:20px; vertical-align: middle;'></progress>\n      [  183/49630 01:56 < 8:51:06, 1.55 it/s, Epoch 0.02/5]\n    </div>\n    <table border=\"1\" class=\"dataframe\">\n  <thead>\n <tr style=\"text-align: left;\">\n      <th>Epoch</th>\n      <th>Training Loss</th>\n      <th>Validation Loss</th>\n    </tr>\n  </thead>\n  <tbody>\n  </tbody>\n</table><p>"
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stderr",
          "text": "[codecarbon INFO @ 04:46:20] Energy consumed for RAM : 0.000690 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:46:20] Energy consumed for all GPUs : 0.001499 kWh. Total GPU Power : 359.1829830586385 W\n[codecarbon INFO @ 04:46:20] Energy consumed for all CPUs : 0.000177 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:46:20] 0.002366 kWh of electricity used since the beginning.\n[codecarbon INFO @ 04:46:35] Energy consumed for RAM : 0.001378 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:46:35] Energy consumed for all GPUs : 0.004078 kWh. Total GPU Power : 619.6193403526773 W\n[codecarbon INFO @ 04:46:35] Energy consumed for all CPUs : 0.000355 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:46:35] 0.005811 kWh of electricity used since the beginning.\n[codecarbon INFO @ 04:46:50] Energy consumed for RAM : 0.002066 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:46:50] Energy consumed for all GPUs : 0.006632 kWh. Total GPU Power : 613.6554096062922 W\n[codecarbon INFO @ 04:46:50] Energy consumed for all CPUs : 0.000532 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:46:50] 0.009230 kWh of electricity used since the beginning.\n[codecarbon INFO @ 04:47:05] Energy consumed for RAM : 0.002754 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:47:05] Energy consumed for all GPUs : 0.009249 kWh. Total GPU Power : 628.5574609453653 W\n[codecarbon INFO @ 04:47:05] Energy consumed for all CPUs : 0.000709 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:47:05] 0.012712 kWh of electricity used since the beginning.\n[codecarbon INFO @ 04:47:20] Energy consumed for RAM : 0.003442 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:47:20] Energy consumed for all GPUs : 0.011850 kWh. Total GPU Power : 624.8454173521444 W\n[codecarbon INFO @ 04:47:20] Energy consumed for all CPUs : 0.000886 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:47:20] 0.016178 kWh of electricity used since the beginning.\n[codecarbon INFO @ 04:47:35] Energy consumed for RAM : 0.004130 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:47:35] Energy consumed for all GPUs : 0.014490 kWh. Total GPU Power : 634.7378588005432 W\n[codecarbon INFO @ 04:47:35] Energy consumed for all CPUs : 0.001063 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:47:35] 0.019683 kWh of electricity used since the beginning.\n[codecarbon INFO @ 04:47:50] Energy consumed for RAM : 0.004818 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:47:50] Energy consumed for all GPUs : 0.017140 kWh. Total GPU Power : 636.6500188212152 W\n[codecarbon INFO @ 04:47:50] Energy consumed for all CPUs : 0.001240 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:47:50] 0.023197 kWh of electricity used since the beginning.\n[codecarbon INFO @ 04:48:05] Energy consumed for RAM : 0.005506 kWh. RAM Power : 165.33123922348022 W\n[codecarbon INFO @ 04:48:05] Energy consumed for all GPUs : 0.019771 kWh. Total GPU Power : 631.881788173399 W\n[codecarbon INFO @ 04:48:05] Energy consumed for all CPUs : 0.001417 kWh. Total CPU Power : 42.5 W\n[codecarbon INFO @ 04:48:05] 0.026694 kWh of electricity used since the beginning.\n"
        }
      ],
      "execution_count": 17,
      "metadata": {
        "gather": {
          "logged": 1706486541798
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "wandb.finish()"
      ],
      "outputs": [],
      "execution_count": null,
      "metadata": {
        "gather": {
          "logged": 1706486541918
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "variant = \"full_sample\" if SUBSAMPLING == 1.0 else f\"subsample-{SUBSAMPLING}\"\n",
        "tokenizer._tokenizer.save(\"tokenizer.json\")\n",
        "tokenizer.push_to_hub(\"chrisvoncsefalvay/daedra\")\n",
        "sample = \"full sample\" if SUBSAMPLING == 1.0 else f\"{SUBSAMPLING * 100}% of the full sample\"\n",
        "\n",
        "model.push_to_hub(\"chrisvoncsefalvay/daedra\", \n",
        "                  variant=variant,\n",
        "                  commit_message=f\"DAEDRA model trained on {sample} of the VAERS dataset (training set size: {dataset['train'].num_rows:,})\")"
      ],
      "outputs": [],
      "execution_count": null,
      "metadata": {
        "gather": {
          "logged": 1706486541928
        }
      }
    },
    {
      "cell_type": "code",
      "source": [
        "variant = \"full_sample\" if SUBSAMPLING == 1.0 else f\"subsample-{SUBSAMPLING}\"\n",
        "tokenizer._tokenizer.save(\"tokenizer.json\")\n",
        "tokenizer.push_to_hub(\"chrisvoncsefalvay/daedra\")\n",
        "sample = \"full sample\" if SUBSAMPLING == 1.0 else f\"{SUBSAMPLING * 100}% of the full sample\"\n",
        "\n",
        "model.push_to_hub(\"chrisvoncsefalvay/daedra\", \n",
        "                  variant=variant,\n",
        "                  commit_message=f\"DAEDRA model trained on {sample} of the VAERS dataset (training set size: {dataset['train'].num_rows:,})\")"
      ],
      "outputs": [],
      "execution_count": null,
      "metadata": {}
    }
  ],
  "metadata": {
    "datalore": {
      "base_environment": "default",
      "computation_mode": "JUPYTER",
      "package_manager": "pip",
      "packages": [
        {
          "name": "datasets",
          "source": "PIP",
          "version": "2.16.1"
        },
        {
          "name": "torch",
          "source": "PIP",
          "version": "2.1.2"
        },
        {
          "name": "accelerate",
          "source": "PIP",
          "version": "0.26.1"
        }
      ],
      "report_row_ids": [
        "un8W7ez7ZwoGb5Co6nydEV",
        "40nN9Hvgi1clHNV5RAemI5",
        "TgRD90H5NSPpKS41OeXI1w",
        "ZOm5BfUs3h1EGLaUkBGeEB",
        "kOP0CZWNSk6vqE3wkPp7Vc",
        "W4PWcOu2O2pRaZyoE2W80h",
        "RolbOnQLIftk0vy9mIcz5M",
        "8OPhUgbaNJmOdiq5D3a6vK",
        "5Qrt3jSvSrpK6Ne1hS6shL",
        "hTq7nFUrovN5Ao4u6dIYWZ",
        "I8WNZLpJ1DVP2wiCW7YBIB",
        "SawhU3I9BewSE1XBPstpNJ",
        "80EtLEl2FIE4FqbWnUD3nT"
      ],
      "version": 3
    },
    "kernel_info": {
      "name": "python38-azureml-pt-tf"
    },
    "kernelspec": {
      "display_name": "azureml_py38_PT_TF",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": "3.8.5",
      "mimetype": "text/x-python",
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "pygments_lexer": "ipython3",
      "nbconvert_exporter": "python",
      "file_extension": ".py"
    },
    "microsoft": {
      "host": {
        "AzureML": {
          "notebookHasBeenCompleted": true
        }
      },
      "ms_spell_check": {
        "ms_spell_check_language": "en"
      }
    },
    "nteract": {
      "version": "[email protected]"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 4
}