chrisght commited on
Commit
4ef2cfe
·
1 Parent(s): 8ce2368

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.18 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0374cab0552cb23e41731726918bde287c106576dac08566ef058c3b07404d03
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7935f8e41d80>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7935f8e2f640>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1696752681781125815,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVBmgPsVkTjtiMuk+flyOP1w6tz8EKZe/yY2aPwaZtD8bnQO/4mWwvY9r8j4o02e+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACT64v5YYa7+L64u/KKWcP3pjpj/gJsi/VH/SP3OXkT9lWng+YDOQv8Vgsz42hCe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABUGaA+xWROO2Iy6T5UFwA/22N3uxSnxz5+XI4/XDq3PwQpl78w1q8+N6NBPxwszL/JjZo/Bpm0PxudA7//+NE+jTNGP6nLHb/iZbC9j2vyPijTZ74Kp/C/ZCCsP2IIsL+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.31269324 0.00314932 0.45546252]\n [ 1.1121976 1.4314685 -1.1809392 ]\n [ 1.2074519 1.4109199 -0.514116 ]\n [-0.08613183 0.47347686 -0.22639143]]",
34
+ "desired_goal": "[[-1.4393932 -0.9183439 -1.0931257 ]\n [ 1.2237902 1.2999108 -1.5636864 ]\n [ 1.6445107 1.1374344 0.24253233]\n [-1.1265678 0.35034767 -0.6543611 ]]",
35
+ "observation": "[[ 0.31269324 0.00314932 0.45546252 0.50035596 -0.00377487 0.38994658]\n [ 1.1121976 1.4314685 -1.1809392 0.343431 0.7563967 -1.5950961 ]\n [ 1.2074519 1.4109199 -0.514116 0.4101028 0.7742241 -0.61638886]\n [-0.08613183 0.47347686 -0.22639143 -1.8800976 1.3447385 -1.3752558 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsQq3vcz+pz2h3dY9VEYjPSswzr1W918+aTwPvvAl/LzDc+U9yqLqvbEgQT1NijY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.08937586 0.08202896 0.10491491]\n [ 0.03986199 -0.10067781 0.21871695]\n [-0.13987888 -0.03077981 0.1120372 ]\n [-0.11456831 0.04715032 0.04456549]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6i+cpb2USuMAWyUSwGMAXSUR0Ck0sbWNFSbdX2UKGgGR7/Q4wh4dIXkaAdLA2gIR0Ck06Hfdhy9dX2UKGgGR7/KspXp4bCKaAdLA2gIR0Ck0ydUsFt9dX2UKGgGR7/AMXrMTviMaAdLAmgIR0Ck1AiZWq95dX2UKGgGR7+vl+3H7xd6aAdLAmgIR0Ck06mhmGucdX2UKGgGR7/PQizLOiWWaAdLA2gIR0Ck0tLRKHwgdX2UKGgGR7/WRFI/Z/TcaAdLA2gIR0Ck1BdFF2FGdX2UKGgGR7/Rh+vyLAHnaAdLBGgIR0Ck0zopYs/ZdX2UKGgGR7/dV/MGHHmzaAdLBGgIR0Ck072szVMFdX2UKGgGR7+/dpItlI3BaAdLAmgIR0Ck00Nr9EThdX2UKGgGR7/aWf9P1tfpaAdLBGgIR0Ck0ueQuEmIdX2UKGgGR7+mrS3LFGXpaAdLAWgIR0Ck0uvb48EFdX2UKGgGR7/API4lyBClaAdLAmgIR0Ck006y0KJEdX2UKGgGR7/amu1WsA/+aAdLBWgIR0Ck1DCaiKzidX2UKGgGR7/Ji3G4qgAZaAdLA2gIR0Ck0849Pk7wdX2UKGgGR7+/tkWhysCDaAdLAmgIR0Ck0vdxp+MIdX2UKGgGR7/DoEB8x9G7aAdLAmgIR0Ck01hQ3xWldX2UKGgGR7+6Eg4ffXPJaAdLAmgIR0Ck1DnHmzSkdX2UKGgGR7/A1x82Jiy6aAdLAmgIR0Ck09dovi97dX2UKGgGR7+VenhsImgKaAdLAWgIR0Ck01zpgTh6dX2UKGgGR7+9EYwZflZHaAdLAmgIR0Ck0wDDbah6dX2UKGgGR7+LRWtEG7jDaAdLAWgIR0Ck09vjGT9sdX2UKGgGR7/DgF5fMOf/aAdLAmgIR0Ck0wswlByCdX2UKGgGR7/OMWoFV1fWaAdLA2gIR0Ck1EpWV/tqdX2UKGgGR7/T+bmU4aP0aAdLA2gIR0Ck022Yv38GdX2UKGgGR7/RZJkGzKLbaAdLA2gIR0Ck0+xsVLzxdX2UKGgGR7+4zzmOlwcYaAdLAmgIR0Ck1FNYKYzBdX2UKGgGR7/OWWyC4BmxaAdLA2gIR0Ck0xm9QGfPdX2UKGgGR7/TYyO7xusLaAdLA2gIR0Ck03oMz/IbdX2UKGgGR7/Qa6z3RG+caAdLA2gIR0Ck0/vRZ2ZBdX2UKGgGR7/Eu5jH4oJBaAdLA2gIR0Ck1GM3qAz6dX2UKGgGR7/PGkN4JNTMaAdLA2gIR0Ck0ynFo+OfdX2UKGgGR7++FGoaUA1faAdLAmgIR0Ck1ATqKP4mdX2UKGgGR7/PaA4GUwBYaAdLA2gIR0Ck04p97WupdX2UKGgGR7+z6GgzxgAqaAdLAmgIR0Ck1GwEhaC+dX2UKGgGR7+2S2Yv38GcaAdLAmgIR0Ck0zJ/XoTxdX2UKGgGR7+67HyVfNRnaAdLAmgIR0Ck05NUOuq4dX2UKGgGR7/NGax5cC5maAdLA2gIR0Ck1BSZa3ZxdX2UKGgGR7+/vsqrilzmaAdLAmgIR0Ck0z3fAKv3dX2UKGgGR7+n420iQkonaAdLAWgIR0Ck1BmLDQ7cdX2UKGgGR7/UeyiVSn+AaAdLBWgIR0Ck1IU3wTdtdX2UKGgGR7/TT+ee4Cp4aAdLBWgIR0Ck06wAdXDFdX2UKGgGR7/W6C17Y02taAdLBGgIR0Ck01AMUh3adX2UKGgGR7/Xr9ETg2qDaAdLBGgIR0Ck1C2gezUrdX2UKGgGR7+l7v5P/JeWaAdLAWgIR0Ck1DHPeHi4dX2UKGgGR7/ZqEeyRjjJaAdLBGgIR0Ck1JjiOvMbdX2UKGgGR7/OkoF3Y+SsaAdLA2gIR0Ck07vcSGrTdX2UKGgGR7+imIj4YaYNaAdLAWgIR0Ck1J1Yp2ECdX2UKGgGR7/Tq3EyckMTaAdLBWgIR0Ck02ga3qiXdX2UKGgGR7/W2uxKQJXyaAdLBGgIR0Ck1EWnsLOSdX2UKGgGR7/IYk3S8an8aAdLA2gIR0Ck08tJ4B3idX2UKGgGR7/SWtEG7jDLaAdLA2gIR0Ck1Ky0Sh8IdX2UKGgGR7/M4BFNL128aAdLA2gIR0Ck03dKujh2dX2UKGgGR7/DyKekHlfaaAdLAmgIR0Ck1LUWl/H6dX2UKGgGR7/VCPp6hQFcaAdLA2gIR0Ck1FKMvRJFdX2UKGgGR7/TposZpBX0aAdLBGgIR0Ck09vNFBppdX2UKGgGR7+5l8PWhAW0aAdLAmgIR0Ck1L9IPK+0dX2UKGgGR7/YLnLaEi+taAdLA2gIR0Ck04W/ag27dX2UKGgGR7+1aGHpKSPmaAdLAmgIR0Ck0+aLn9vTdX2UKGgGR7/UJ5VwPy08aAdLBGgIR0Ck1GVTBInSdX2UKGgGR7/Q/Yao/A0saAdLA2gIR0Ck1Mwgkka/dX2UKGgGR7+5wyZa3ZwoaAdLAmgIR0Ck0+70e2d/dX2UKGgGR7/WFYuCf6GhaAdLA2gIR0Ck05LF4s3AdX2UKGgGR7/PVBlcyFfzaAdLA2gIR0Ck1HPugHu7dX2UKGgGR7+y+/QBxPweaAdLAmgIR0Ck0/l2mpEQdX2UKGgGR7/D+zdDYywfaAdLA2gIR0Ck06FoDgZTdX2UKGgGR7/ScX3xnWauaAdLBGgIR0Ck1N8vduYQdX2UKGgGR7/CuloDgZTAaAdLAmgIR0Ck1HyvTw2EdX2UKGgGR7/AcsDnvDxcaAdLAmgIR0Ck06oPsiSrdX2UKGgGR7/BlHz6JqIraAdLAmgIR0Ck1OgVoHs1dX2UKGgGR7/WSzw+dK/VaAdLBGgIR0Ck1AsCtA9ndX2UKGgGR7/JGkvboKUnaAdLA2gIR0Ck1IvugHu7dX2UKGgGR7/Pnh86V+qjaAdLA2gIR0Ck07lvhqCZdX2UKGgGR7+8lme18b71aAdLAmgIR0Ck1JTeO4oadX2UKGgGR7/gLAxi5NGmaAdLBGgIR0Ck1Pt1QqI8dX2UKGgGR7+EpmVZ9uxbaAdLAWgIR0Ck1JlHSWqtdX2UKGgGR7/a93r2QGOdaAdLBGgIR0Ck1B8cENe/dX2UKGgGR7+fTkQwsXizaAdLAWgIR0Ck1QGlANXpdX2UKGgGR7/HeY2Kl54XaAdLA2gIR0Ck08kk8ifQdX2UKGgGR7+/CqIacZtOaAdLAmgIR0Ck1Kdn003wdX2UKGgGR7+4HjZL7GedaAdLAmgIR0Ck1Cz850bMdX2UKGgGR7/C1v2oNutPaAdLA2gIR0Ck1RJ4B3iadX2UKGgGR7+17u2JBPbgaAdLAmgIR0Ck1LABLf1pdX2UKGgGR7/WGVzIV/MGaAdLBGgIR0Ck09z2OAAidX2UKGgGR7++AWi1y/9HaAdLAmgIR0Ck1LgHNX5ndX2UKGgGR7/P+glF+d9VaAdLBGgIR0Ck1D2TgVGkdX2UKGgGR7/XV7x/d69kaAdLBGgIR0Ck1SUfHPu5dX2UKGgGR7+5vbXYlIEsaAdLAmgIR0Ck1MKc/dIodX2UKGgGR7/Czi0fHPu5aAdLAmgIR0Ck1Egz544ZdX2UKGgGR7/X/wy6+WWyaAdLBGgIR0Ck0+/gR9PUdX2UKGgGR7/H9F4LThHcaAdLA2gIR0Ck1TFgDzRQdX2UKGgGR7/OPVd5Y5ktaAdLA2gIR0Ck1M7WNFSbdX2UKGgGR7/EeiBXjlxPaAdLA2gIR0Ck1FRWkrPMdX2UKGgGR7+bCWNWEK3NaAdLAWgIR0Ck1NU1ZTybdX2UKGgGR7/TdDIBBAv+aAdLA2gIR0Ck0/5uhsZYdX2UKGgGR7+1Ng0CRwIdaAdLAmgIR0Ck1TwiA2AHdX2UKGgGR7/DpC8e0XxfaAdLAmgIR0Ck1N2p6yB1dX2UKGgGR7/JAFgUlAu7aAdLA2gIR0Ck1GM9r434dX2UKGgGR7/R3KB/ZuhsaAdLA2gIR0Ck1Ar0jC53dX2UKGgGR7/DMzuWrwOOaAdLA2gIR0Ck1Uib2Dg7dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11fa73f554e31aa406f0750a9a034134e0211579d1edd0410ce599ed60dd2b93
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a70f1ef921bcceeb111d30611ec84210b3de8ac2b0e0277c0a6116d22b08868
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7935f8e41d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7935f8e2f640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696752681781125815, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVBmgPsVkTjtiMuk+flyOP1w6tz8EKZe/yY2aPwaZtD8bnQO/4mWwvY9r8j4o02e+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACT64v5YYa7+L64u/KKWcP3pjpj/gJsi/VH/SP3OXkT9lWng+YDOQv8Vgsz42hCe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABUGaA+xWROO2Iy6T5UFwA/22N3uxSnxz5+XI4/XDq3PwQpl78w1q8+N6NBPxwszL/JjZo/Bpm0PxudA7//+NE+jTNGP6nLHb/iZbC9j2vyPijTZ74Kp/C/ZCCsP2IIsL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.31269324 0.00314932 0.45546252]\n [ 1.1121976 1.4314685 -1.1809392 ]\n [ 1.2074519 1.4109199 -0.514116 ]\n [-0.08613183 0.47347686 -0.22639143]]", "desired_goal": "[[-1.4393932 -0.9183439 -1.0931257 ]\n [ 1.2237902 1.2999108 -1.5636864 ]\n [ 1.6445107 1.1374344 0.24253233]\n [-1.1265678 0.35034767 -0.6543611 ]]", "observation": "[[ 0.31269324 0.00314932 0.45546252 0.50035596 -0.00377487 0.38994658]\n [ 1.1121976 1.4314685 -1.1809392 0.343431 0.7563967 -1.5950961 ]\n [ 1.2074519 1.4109199 -0.514116 0.4101028 0.7742241 -0.61638886]\n [-0.08613183 0.47347686 -0.22639143 -1.8800976 1.3447385 -1.3752558 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsQq3vcz+pz2h3dY9VEYjPSswzr1W918+aTwPvvAl/LzDc+U9yqLqvbEgQT1NijY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08937586 0.08202896 0.10491491]\n [ 0.03986199 -0.10067781 0.21871695]\n [-0.13987888 -0.03077981 0.1120372 ]\n [-0.11456831 0.04715032 0.04456549]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6i+cpb2USuMAWyUSwGMAXSUR0Ck0sbWNFSbdX2UKGgGR7/Q4wh4dIXkaAdLA2gIR0Ck06Hfdhy9dX2UKGgGR7/KspXp4bCKaAdLA2gIR0Ck0ydUsFt9dX2UKGgGR7/AMXrMTviMaAdLAmgIR0Ck1AiZWq95dX2UKGgGR7+vl+3H7xd6aAdLAmgIR0Ck06mhmGucdX2UKGgGR7/PQizLOiWWaAdLA2gIR0Ck0tLRKHwgdX2UKGgGR7/WRFI/Z/TcaAdLA2gIR0Ck1BdFF2FGdX2UKGgGR7/Rh+vyLAHnaAdLBGgIR0Ck0zopYs/ZdX2UKGgGR7/dV/MGHHmzaAdLBGgIR0Ck072szVMFdX2UKGgGR7+/dpItlI3BaAdLAmgIR0Ck00Nr9EThdX2UKGgGR7/aWf9P1tfpaAdLBGgIR0Ck0ueQuEmIdX2UKGgGR7+mrS3LFGXpaAdLAWgIR0Ck0uvb48EFdX2UKGgGR7/API4lyBClaAdLAmgIR0Ck006y0KJEdX2UKGgGR7/amu1WsA/+aAdLBWgIR0Ck1DCaiKzidX2UKGgGR7/Ji3G4qgAZaAdLA2gIR0Ck0849Pk7wdX2UKGgGR7+/tkWhysCDaAdLAmgIR0Ck0vdxp+MIdX2UKGgGR7/DoEB8x9G7aAdLAmgIR0Ck01hQ3xWldX2UKGgGR7+6Eg4ffXPJaAdLAmgIR0Ck1DnHmzSkdX2UKGgGR7/A1x82Jiy6aAdLAmgIR0Ck09dovi97dX2UKGgGR7+VenhsImgKaAdLAWgIR0Ck01zpgTh6dX2UKGgGR7+9EYwZflZHaAdLAmgIR0Ck0wDDbah6dX2UKGgGR7+LRWtEG7jDaAdLAWgIR0Ck09vjGT9sdX2UKGgGR7/DgF5fMOf/aAdLAmgIR0Ck0wswlByCdX2UKGgGR7/OMWoFV1fWaAdLA2gIR0Ck1EpWV/tqdX2UKGgGR7/T+bmU4aP0aAdLA2gIR0Ck022Yv38GdX2UKGgGR7/RZJkGzKLbaAdLA2gIR0Ck0+xsVLzxdX2UKGgGR7+4zzmOlwcYaAdLAmgIR0Ck1FNYKYzBdX2UKGgGR7/OWWyC4BmxaAdLA2gIR0Ck0xm9QGfPdX2UKGgGR7/TYyO7xusLaAdLA2gIR0Ck03oMz/IbdX2UKGgGR7/Qa6z3RG+caAdLA2gIR0Ck0/vRZ2ZBdX2UKGgGR7/Eu5jH4oJBaAdLA2gIR0Ck1GM3qAz6dX2UKGgGR7/PGkN4JNTMaAdLA2gIR0Ck0ynFo+OfdX2UKGgGR7++FGoaUA1faAdLAmgIR0Ck1ATqKP4mdX2UKGgGR7/PaA4GUwBYaAdLA2gIR0Ck04p97WupdX2UKGgGR7+z6GgzxgAqaAdLAmgIR0Ck1GwEhaC+dX2UKGgGR7+2S2Yv38GcaAdLAmgIR0Ck0zJ/XoTxdX2UKGgGR7+67HyVfNRnaAdLAmgIR0Ck05NUOuq4dX2UKGgGR7/NGax5cC5maAdLA2gIR0Ck1BSZa3ZxdX2UKGgGR7+/vsqrilzmaAdLAmgIR0Ck0z3fAKv3dX2UKGgGR7+n420iQkonaAdLAWgIR0Ck1BmLDQ7cdX2UKGgGR7/UeyiVSn+AaAdLBWgIR0Ck1IU3wTdtdX2UKGgGR7/TT+ee4Cp4aAdLBWgIR0Ck06wAdXDFdX2UKGgGR7/W6C17Y02taAdLBGgIR0Ck01AMUh3adX2UKGgGR7/Xr9ETg2qDaAdLBGgIR0Ck1C2gezUrdX2UKGgGR7+l7v5P/JeWaAdLAWgIR0Ck1DHPeHi4dX2UKGgGR7/ZqEeyRjjJaAdLBGgIR0Ck1JjiOvMbdX2UKGgGR7/OkoF3Y+SsaAdLA2gIR0Ck07vcSGrTdX2UKGgGR7+imIj4YaYNaAdLAWgIR0Ck1J1Yp2ECdX2UKGgGR7/Tq3EyckMTaAdLBWgIR0Ck02ga3qiXdX2UKGgGR7/W2uxKQJXyaAdLBGgIR0Ck1EWnsLOSdX2UKGgGR7/IYk3S8an8aAdLA2gIR0Ck08tJ4B3idX2UKGgGR7/SWtEG7jDLaAdLA2gIR0Ck1Ky0Sh8IdX2UKGgGR7/M4BFNL128aAdLA2gIR0Ck03dKujh2dX2UKGgGR7/DyKekHlfaaAdLAmgIR0Ck1LUWl/H6dX2UKGgGR7/VCPp6hQFcaAdLA2gIR0Ck1FKMvRJFdX2UKGgGR7/TposZpBX0aAdLBGgIR0Ck09vNFBppdX2UKGgGR7+5l8PWhAW0aAdLAmgIR0Ck1L9IPK+0dX2UKGgGR7/YLnLaEi+taAdLA2gIR0Ck04W/ag27dX2UKGgGR7+1aGHpKSPmaAdLAmgIR0Ck0+aLn9vTdX2UKGgGR7/UJ5VwPy08aAdLBGgIR0Ck1GVTBInSdX2UKGgGR7/Q/Yao/A0saAdLA2gIR0Ck1Mwgkka/dX2UKGgGR7+5wyZa3ZwoaAdLAmgIR0Ck0+70e2d/dX2UKGgGR7/WFYuCf6GhaAdLA2gIR0Ck05LF4s3AdX2UKGgGR7/PVBlcyFfzaAdLA2gIR0Ck1HPugHu7dX2UKGgGR7+y+/QBxPweaAdLAmgIR0Ck0/l2mpEQdX2UKGgGR7/D+zdDYywfaAdLA2gIR0Ck06FoDgZTdX2UKGgGR7/ScX3xnWauaAdLBGgIR0Ck1N8vduYQdX2UKGgGR7/CuloDgZTAaAdLAmgIR0Ck1HyvTw2EdX2UKGgGR7/AcsDnvDxcaAdLAmgIR0Ck06oPsiSrdX2UKGgGR7/BlHz6JqIraAdLAmgIR0Ck1OgVoHs1dX2UKGgGR7/WSzw+dK/VaAdLBGgIR0Ck1AsCtA9ndX2UKGgGR7/JGkvboKUnaAdLA2gIR0Ck1IvugHu7dX2UKGgGR7/Pnh86V+qjaAdLA2gIR0Ck07lvhqCZdX2UKGgGR7+8lme18b71aAdLAmgIR0Ck1JTeO4oadX2UKGgGR7/gLAxi5NGmaAdLBGgIR0Ck1Pt1QqI8dX2UKGgGR7+EpmVZ9uxbaAdLAWgIR0Ck1JlHSWqtdX2UKGgGR7/a93r2QGOdaAdLBGgIR0Ck1B8cENe/dX2UKGgGR7+fTkQwsXizaAdLAWgIR0Ck1QGlANXpdX2UKGgGR7/HeY2Kl54XaAdLA2gIR0Ck08kk8ifQdX2UKGgGR7+/CqIacZtOaAdLAmgIR0Ck1Kdn003wdX2UKGgGR7+4HjZL7GedaAdLAmgIR0Ck1Cz850bMdX2UKGgGR7/C1v2oNutPaAdLA2gIR0Ck1RJ4B3iadX2UKGgGR7+17u2JBPbgaAdLAmgIR0Ck1LABLf1pdX2UKGgGR7/WGVzIV/MGaAdLBGgIR0Ck09z2OAAidX2UKGgGR7++AWi1y/9HaAdLAmgIR0Ck1LgHNX5ndX2UKGgGR7/P+glF+d9VaAdLBGgIR0Ck1D2TgVGkdX2UKGgGR7/XV7x/d69kaAdLBGgIR0Ck1SUfHPu5dX2UKGgGR7+5vbXYlIEsaAdLAmgIR0Ck1MKc/dIodX2UKGgGR7/Czi0fHPu5aAdLAmgIR0Ck1Egz544ZdX2UKGgGR7/X/wy6+WWyaAdLBGgIR0Ck0+/gR9PUdX2UKGgGR7/H9F4LThHcaAdLA2gIR0Ck1TFgDzRQdX2UKGgGR7/OPVd5Y5ktaAdLA2gIR0Ck1M7WNFSbdX2UKGgGR7/EeiBXjlxPaAdLA2gIR0Ck1FRWkrPMdX2UKGgGR7+bCWNWEK3NaAdLAWgIR0Ck1NU1ZTybdX2UKGgGR7/TdDIBBAv+aAdLA2gIR0Ck0/5uhsZYdX2UKGgGR7+1Ng0CRwIdaAdLAmgIR0Ck1TwiA2AHdX2UKGgGR7/DpC8e0XxfaAdLAmgIR0Ck1N2p6yB1dX2UKGgGR7/JAFgUlAu7aAdLA2gIR0Ck1GM9r434dX2UKGgGR7/R3KB/ZuhsaAdLA2gIR0Ck1Ar0jC53dX2UKGgGR7/DMzuWrwOOaAdLA2gIR0Ck1Uib2Dg7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (677 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.18312394376844168, "std_reward": 0.10788049765790488, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-08T09:03:27.047308"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cadacf92a7e82faab671fad6854b14044327c4c78bc972e88f7f2d9d57a4c37
3
+ size 2636