File size: 5,988 Bytes
2b35800 147d3e2 2b35800 147d3e2 2b35800 ed1749d 2b35800 17da9c4 2b35800 17da9c4 2b35800 17da9c4 2b35800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import argparse
import time
import json
import nltk
from rank_bm25 import BM25Okapi
import numpy as np
import torch
from transformers import BloomTokenizerFast, BloomForCausalLM
def claim2prompts(example):
claim = example["claim"]
# claim_str = "Claim: " + claim + "||Evidence: "
claim_str = "Evidence: "
for question in example["questions"]:
q_text = question["question"].strip()
if len(q_text) == 0:
continue
if not q_text[-1] == "?":
q_text += "?"
answer_strings = []
for a in question["answers"]:
if a["answer_type"] in ["Extractive", "Abstractive"]:
answer_strings.append(a["answer"])
if a["answer_type"] == "Boolean":
answer_strings.append(
a["answer"]
+ ", because "
+ a["boolean_explanation"].lower().strip()
)
for a_text in answer_strings:
if not a_text[-1] in [".", "!", ":", "?"]:
a_text += "."
# prompt_lookup_str = claim + " " + a_text
prompt_lookup_str = a_text
this_q_claim_str = (
claim_str + " " + a_text.strip() + "||Question answered: " + q_text
)
yield (
prompt_lookup_str,
this_q_claim_str.replace("\n", " ").replace("||", "\n"),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Use a prompt to generate questions that could be answered by top-k retrieved evidence. Output generated questions."
)
parser.add_argument("--reference_corpus", default="data/train.json", help="")
parser.add_argument("--target_file", default="data/dev.json", help="")
parser.add_argument(
"-i",
"--top_k_target_knowledge",
default="data_store/dev_top_k_sentences.json",
help="Directory where the sentences for the scraped data is saved.",
)
parser.add_argument(
"-o",
"--output_questions",
default="data_store/dev_top_k_qa.json",
help="Directory where the sentences for the scraped data is saved.",
)
parser.add_argument(
"--top_k",
default=100,
type=int,
help="How many documents should we pick out with BM25",
)
args = parser.parse_args()
# few-shot learning from the training set
with open(args.reference_corpus, "r", encoding="utf-8") as json_file:
train_examples = json.load(json_file)
prompt_corpus, tokenized_corpus = [], []
for example in train_examples:
for lookup_str, prompt in claim2prompts(example):
entry = nltk.word_tokenize(lookup_str)
tokenized_corpus.append(entry)
prompt_corpus.append(prompt)
prompt_bm25 = BM25Okapi(tokenized_corpus)
# Load the bloom model:
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom-7b1")
model = BloomForCausalLM.from_pretrained(
"bigscience/bloom-7b1",
device_map="auto",
torch_dtype=torch.bfloat16,
offload_folder="./offload",
)
with open(args.output_questions, "w", encoding="utf-8") as output_file:
with open(args.top_k_target_knowledge, "r", encoding="utf-8") as json_file:
for i, line in enumerate(json_file):
data = json.loads(line)
top_k_sentences_urls = data[f"top_{args.top_k}"]
claim = data["claim"]
claim_id = data["claim_id"]
bm25_qau = [] # question, answer, url
# Generate questions for those top k:
for sent_i, sentences_urls in enumerate(top_k_sentences_urls):
prompt_lookup_str = sentences_urls["sentence"]
url = sentences_urls["url"]
prompt_s = prompt_bm25.get_scores(
nltk.word_tokenize(prompt_lookup_str)
)
prompt_n = 10
prompt_top_n = np.argsort(prompt_s)[::-1][:prompt_n]
prompt_docs = [prompt_corpus[i] for i in prompt_top_n]
claim_prompt = (
"Evidence: "
+ prompt_lookup_str.replace("\n", " ")
+ "\nQuestion answered: "
)
prompt = "\n\n".join(prompt_docs + [claim_prompt])
inputs = tokenizer([prompt], padding=True, return_tensors="pt").to(
model.device
)
st = time.time()
outputs = model.generate(
inputs["input_ids"],
max_length=5000,
num_beams=2,
no_repeat_ngram_size=2,
early_stopping=True,
)
print(
f"Generated QA for sent {sent_i} in file {i}. Time elapsed: {time.time() - st}"
)
tgt_text = tokenizer.batch_decode(
outputs[:, inputs["input_ids"].shape[-1] :],
skip_special_tokens=True,
)[0]
# We are not allowed to generate more than 250 characters:
tgt_text = tgt_text[:250]
qau_pair = [
tgt_text.strip().split("?")[0].replace("\n", " ") + "?",
prompt_lookup_str.replace("\n", " "),
url,
]
bm25_qau.append(qau_pair)
json_data = {
"claim_id": claim_id,
"claim": claim,
"bm25_qau": bm25_qau,
}
output_file.write(json.dumps(json_data, ensure_ascii=False) + "\n")
output_file.flush()
|