Chenchen Liu commited on
Commit
cedf395
1 Parent(s): 5d6d22b

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReach-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TQC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReach-v3
16
+ type: PandaReach-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.00 +/- 0.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TQC** Agent playing **PandaReach-v3**
25
+ This is a trained model of a **TQC** agent playing **PandaReach-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v3 -orga chencliu -f logs/
47
+ python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v3 -orga chencliu -f logs/
53
+ python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo tqc --env PandaReach-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo tqc --env PandaReach-v3 -f logs/ -orga chencliu
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('buffer_size', 1000000),
67
+ ('ent_coef', 'auto'),
68
+ ('gamma', 0.95),
69
+ ('learning_rate', 0.001),
70
+ ('learning_starts', 1000),
71
+ ('n_timesteps', 20000.0),
72
+ ('normalize', True),
73
+ ('policy', 'MultiInputPolicy'),
74
+ ('policy_kwargs', 'dict(net_arch=[64, 64], n_critics=1)'),
75
+ ('replay_buffer_class', 'HerReplayBuffer'),
76
+ ('replay_buffer_kwargs',
77
+ "dict( goal_selection_strategy='future', n_sampled_goal=4 )"),
78
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
79
+ ```
80
+
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - tqc
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - PandaReach-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_env_kwargs
13
+ - null
14
+ - - eval_episodes
15
+ - 5
16
+ - - eval_freq
17
+ - 25000
18
+ - - gym_packages
19
+ - []
20
+ - - hyperparams
21
+ - null
22
+ - - log_folder
23
+ - logs/
24
+ - - log_interval
25
+ - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
+ - - n_evaluations
31
+ - null
32
+ - - n_jobs
33
+ - 1
34
+ - - n_startup_trials
35
+ - 10
36
+ - - n_timesteps
37
+ - -1
38
+ - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
+ - - num_threads
43
+ - -1
44
+ - - optimization_log_path
45
+ - null
46
+ - - optimize_hyperparameters
47
+ - false
48
+ - - progress
49
+ - false
50
+ - - pruner
51
+ - median
52
+ - - sampler
53
+ - tpe
54
+ - - save_freq
55
+ - -1
56
+ - - save_replay_buffer
57
+ - false
58
+ - - seed
59
+ - 60077985
60
+ - - storage
61
+ - null
62
+ - - study_name
63
+ - null
64
+ - - tensorboard_log
65
+ - ''
66
+ - - track
67
+ - false
68
+ - - trained_agent
69
+ - ''
70
+ - - truncate_last_trajectory
71
+ - true
72
+ - - uuid
73
+ - false
74
+ - - vec_env
75
+ - dummy
76
+ - - verbose
77
+ - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
config.yml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 1000000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.95
10
+ - - learning_rate
11
+ - 0.001
12
+ - - learning_starts
13
+ - 1000
14
+ - - n_timesteps
15
+ - 20000.0
16
+ - - normalize
17
+ - true
18
+ - - policy
19
+ - MultiInputPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[64, 64], n_critics=1)
22
+ - - replay_buffer_class
23
+ - HerReplayBuffer
24
+ - - replay_buffer_kwargs
25
+ - dict( goal_selection_strategy='future', n_sampled_goal=4 )
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bff981af17c438f4117ee01f3e06b2b1207c0d824cc6f32123060241d7f9b34
3
+ size 667356
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.0, "std_reward": 0.7745966692414834, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-03T16:38:14.219553"}
tqc-PandaReach-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e55336fbc4e0ced8e6d3f38e883007c2fd057f018816bc4d4494b5813cd00fef
3
+ size 212990
tqc-PandaReach-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
tqc-PandaReach-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1193b180ad69e6f9d79f77e67a8e6baacead55b77a01a2297c408c36c8d7253b
3
+ size 49565
tqc-PandaReach-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80fb23c6d493cc70f66da2f52c8bac19301384564d494ae40e610434a7281a66
3
+ size 59439
tqc-PandaReach-v3/data ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "sb3_contrib.tqc.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x7fe5ef4eb880>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fe5ef505140>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "net_arch": [
14
+ 64,
15
+ 64
16
+ ],
17
+ "n_critics": 1,
18
+ "use_sde": false
19
+ },
20
+ "num_timesteps": 20000,
21
+ "_total_timesteps": 20000,
22
+ "_num_timesteps_at_start": 0,
23
+ "seed": 0,
24
+ "action_noise": null,
25
+ "start_time": 1696320824737719967,
26
+ "learning_rate": {
27
+ ":type:": "<class 'function'>",
28
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
29
+ },
30
+ "tensorboard_log": null,
31
+ "_last_obs": null,
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'collections.OrderedDict'>",
38
+ ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAA570FPu7vMr3jT0U+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
39
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
40
+ "desired_goal": "[[ 0.13060723 -0.04368585 0.19268756]]",
41
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
42
+ },
43
+ "_episode_num": 4859,
44
+ "use_sde": false,
45
+ "sde_sample_freq": -1,
46
+ "_current_progress_remaining": 0.0,
47
+ "_stats_window_size": 100,
48
+ "ep_info_buffer": {
49
+ ":type:": "<class 'collections.deque'>",
50
+ ":serialized:": "gAWVFw0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAAAAAAAAACMAWyUSwOMAXSUR0BiMvvH93r2jAppc19zdWNjZXNzlIh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGIzfgJkXk5oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGIz+ZgG8mNoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQGI1JI1+AmRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI10vXbudBoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI2TnA6+39oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI3CU5dWyVoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI3gogFHJ9oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGI3vci4axZoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI4QUg0TDhoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGI5OFxn3+NoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI54+0PYnRoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI6Wv0RODdoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI7Jm29cr1oCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQGI8Wt2cJ+loCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGI8llbu+h5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI9R8lXzUZoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGI+RpUPxx1oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI+xL9MsYloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI/PXTVlPJoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI/6Mzdk8RoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJA6bF0gbJoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJBorWiDdxoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJCingpBopoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJDNZFG5MFoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJD+LNwBHVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJEuPFNtZVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJFce8wpONoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJF5MDfWMFoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJG5kTYdyVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJHk9+w1SBoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJIc3l0YCRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJJIQnQY1poCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJKJhF3IMloCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJK3aSLZSNoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJLUfYBeX1oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJL9/SYw7FoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJMuwX668RoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJNsEA5q/NoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJOJaRp1zRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJOzNUwSJ1oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJQDRtxdY5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJQwhW5paloCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJRo1k1/DtoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJSFrl/6O5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJTGOuJUHZoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJUCm/FirloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJUfkvK2a5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJVYQBgeBBoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJWGoBJZntoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJW0XP7el9oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJXu+ZgG8poCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJX9tdiUgVoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJYfY8Md95oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJZOFxn3+NoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJaL2QGOdZoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJa20JF9a5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJbkhA4XGhoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJcfMnqmj1oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJdZVfeDWdoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJeDEFW4mVoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJe+vIOpbVoCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJfNtqHoHNoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJf8i4axX5oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJgZezD4xloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJg6vRqoIhoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJha06YE4hoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJh3j+717JoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJixsEaESNoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJj3L3bmEJoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJkkZR8+idoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJlQUg0TDhoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJmJJXhfjVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJm3oTwlSloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJnVea8YhtoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJoRa5f+jxoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJouKGcnVpoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJpc63iJfpoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJqMA/9pAVoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJqpiRW915oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJrUb1h9b5oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJrzqbBoEloCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJsgjIJZ4hoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJtOWa+evpoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJt6f8MuvloCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJu1rIo3JhoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJvfyPMjeNoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJwUpEx7AtoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJwvCVKPGRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJxY8EFGG5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJyRZU1hstoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJy5w4sEq5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJzhKtga3toCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ0Lqt5le5oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJ0bTlT3qRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ1EJSiudRoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJ1gD7qIJtoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ2JqqOtGNoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ2ysCDEm9oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJ3CILw4KhoCYh1ZS4="
51
+ },
52
+ "ep_success_buffer": {
53
+ ":type:": "<class 'collections.deque'>",
54
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
55
+ },
56
+ "_n_updates": 19000,
57
+ "observation_space": {
58
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
59
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
60
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
61
+ "_shape": null,
62
+ "dtype": null,
63
+ "_np_random": null
64
+ },
65
+ "action_space": {
66
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
67
+ ":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
68
+ "dtype": "float32",
69
+ "bounded_below": "[ True True True]",
70
+ "bounded_above": "[ True True True]",
71
+ "_shape": [
72
+ 3
73
+ ],
74
+ "low": "[-1. -1. -1.]",
75
+ "high": "[1. 1. 1.]",
76
+ "low_repr": "-1.0",
77
+ "high_repr": "1.0",
78
+ "_np_random": "Generator(PCG64)"
79
+ },
80
+ "n_envs": 1,
81
+ "buffer_size": 1,
82
+ "batch_size": 256,
83
+ "learning_starts": 1000,
84
+ "tau": 0.005,
85
+ "gamma": 0.95,
86
+ "gradient_steps": 1,
87
+ "optimize_memory_usage": false,
88
+ "replay_buffer_class": {
89
+ ":type:": "<class 'abc.ABCMeta'>",
90
+ ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
91
+ "__module__": "stable_baselines3.her.her_replay_buffer",
92
+ "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
93
+ "__init__": "<function HerReplayBuffer.__init__ at 0x7fe5efa5dfc0>",
94
+ "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7fe5efa5e050>",
95
+ "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7fe5efa5e0e0>",
96
+ "set_env": "<function HerReplayBuffer.set_env at 0x7fe5efa5e170>",
97
+ "add": "<function HerReplayBuffer.add at 0x7fe5efa5e200>",
98
+ "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7fe5efa5e290>",
99
+ "sample": "<function HerReplayBuffer.sample at 0x7fe5efa5e320>",
100
+ "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7fe5efa5e3b0>",
101
+ "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7fe5efa5e440>",
102
+ "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7fe5efa5e4d0>",
103
+ "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7fe5efa5e560>",
104
+ "__abstractmethods__": "frozenset()",
105
+ "_abc_impl": "<_abc._abc_data object at 0x7fe5efa63a80>"
106
+ },
107
+ "replay_buffer_kwargs": {
108
+ "goal_selection_strategy": "future",
109
+ "n_sampled_goal": 4
110
+ },
111
+ "train_freq": {
112
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
113
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
114
+ },
115
+ "use_sde_at_warmup": false,
116
+ "target_entropy": -3.0,
117
+ "ent_coef": "auto",
118
+ "target_update_interval": 1,
119
+ "top_quantiles_to_drop_per_net": 2,
120
+ "lr_schedule": {
121
+ ":type:": "<class 'function'>",
122
+ ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
123
+ },
124
+ "batch_norm_stats": [],
125
+ "batch_norm_stats_target": []
126
+ }
tqc-PandaReach-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f555dcf5477059ad10e18e782ccb572b9c1ef0eba704f80be2a8d157ae6a64b3
3
+ size 1507
tqc-PandaReach-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fc2c3d36f2f71fa12bfd49509a1a7895387c27d70591ea3771eef365ed62ae0
3
+ size 83177
tqc-PandaReach-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c96643b64fd79d0fd7e42695ba0df2960e2042290c3def2ed0a39c9058ad7386
3
+ size 747
tqc-PandaReach-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-84-generic-x86_64-with-glibc2.31 # 93~20.04.1-Ubuntu SMP Wed Sep 6 16:15:40 UTC 2023
2
+ - Python: 3.10.0
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a2f39aab6f66546c3a0f46afab5c6c2fa822c1e08d9d39d1b6a28a4e2af0352
3
+ size 113647
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd8b431486ee0bbb9d77167c98ef8e4ebd8f1dfd39907563bdc42c739e16766b
3
+ size 2722