Chenchen Liu
commited on
Commit
•
cedf395
1
Parent(s):
5d6d22b
Initial commit
Browse files- .gitattributes +1 -0
- README.md +84 -0
- args.yml +83 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-PandaReach-v3.zip +3 -0
- tqc-PandaReach-v3/_stable_baselines3_version +1 -0
- tqc-PandaReach-v3/actor.optimizer.pth +3 -0
- tqc-PandaReach-v3/critic.optimizer.pth +3 -0
- tqc-PandaReach-v3/data +126 -0
- tqc-PandaReach-v3/ent_coef_optimizer.pth +3 -0
- tqc-PandaReach-v3/policy.pth +3 -0
- tqc-PandaReach-v3/pytorch_variables.pth +3 -0
- tqc-PandaReach-v3/system_info.txt +9 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReach-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReach-v3
|
16 |
+
type: PandaReach-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.00 +/- 0.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **PandaReach-v3**
|
25 |
+
This is a trained model of a **TQC** agent playing **PandaReach-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v3 -orga chencliu -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env PandaReach-v3 -orga chencliu -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo tqc --env PandaReach-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo tqc --env PandaReach-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo tqc --env PandaReach-v3 -f logs/ -orga chencliu
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('buffer_size', 1000000),
|
67 |
+
('ent_coef', 'auto'),
|
68 |
+
('gamma', 0.95),
|
69 |
+
('learning_rate', 0.001),
|
70 |
+
('learning_starts', 1000),
|
71 |
+
('n_timesteps', 20000.0),
|
72 |
+
('normalize', True),
|
73 |
+
('policy', 'MultiInputPolicy'),
|
74 |
+
('policy_kwargs', 'dict(net_arch=[64, 64], n_critics=1)'),
|
75 |
+
('replay_buffer_class', 'HerReplayBuffer'),
|
76 |
+
('replay_buffer_kwargs',
|
77 |
+
"dict( goal_selection_strategy='future', n_sampled_goal=4 )"),
|
78 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
79 |
+
```
|
80 |
+
|
81 |
+
# Environment Arguments
|
82 |
+
```python
|
83 |
+
{'render_mode': 'rgb_array'}
|
84 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- PandaReach-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_env_kwargs
|
13 |
+
- null
|
14 |
+
- - eval_episodes
|
15 |
+
- 5
|
16 |
+
- - eval_freq
|
17 |
+
- 25000
|
18 |
+
- - gym_packages
|
19 |
+
- []
|
20 |
+
- - hyperparams
|
21 |
+
- null
|
22 |
+
- - log_folder
|
23 |
+
- logs/
|
24 |
+
- - log_interval
|
25 |
+
- -1
|
26 |
+
- - max_total_trials
|
27 |
+
- null
|
28 |
+
- - n_eval_envs
|
29 |
+
- 1
|
30 |
+
- - n_evaluations
|
31 |
+
- null
|
32 |
+
- - n_jobs
|
33 |
+
- 1
|
34 |
+
- - n_startup_trials
|
35 |
+
- 10
|
36 |
+
- - n_timesteps
|
37 |
+
- -1
|
38 |
+
- - n_trials
|
39 |
+
- 500
|
40 |
+
- - no_optim_plots
|
41 |
+
- false
|
42 |
+
- - num_threads
|
43 |
+
- -1
|
44 |
+
- - optimization_log_path
|
45 |
+
- null
|
46 |
+
- - optimize_hyperparameters
|
47 |
+
- false
|
48 |
+
- - progress
|
49 |
+
- false
|
50 |
+
- - pruner
|
51 |
+
- median
|
52 |
+
- - sampler
|
53 |
+
- tpe
|
54 |
+
- - save_freq
|
55 |
+
- -1
|
56 |
+
- - save_replay_buffer
|
57 |
+
- false
|
58 |
+
- - seed
|
59 |
+
- 60077985
|
60 |
+
- - storage
|
61 |
+
- null
|
62 |
+
- - study_name
|
63 |
+
- null
|
64 |
+
- - tensorboard_log
|
65 |
+
- ''
|
66 |
+
- - track
|
67 |
+
- false
|
68 |
+
- - trained_agent
|
69 |
+
- ''
|
70 |
+
- - truncate_last_trajectory
|
71 |
+
- true
|
72 |
+
- - uuid
|
73 |
+
- false
|
74 |
+
- - vec_env
|
75 |
+
- dummy
|
76 |
+
- - verbose
|
77 |
+
- 1
|
78 |
+
- - wandb_entity
|
79 |
+
- null
|
80 |
+
- - wandb_project_name
|
81 |
+
- sb3
|
82 |
+
- - wandb_tags
|
83 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - buffer_size
|
5 |
+
- 1000000
|
6 |
+
- - ent_coef
|
7 |
+
- auto
|
8 |
+
- - gamma
|
9 |
+
- 0.95
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - learning_starts
|
13 |
+
- 1000
|
14 |
+
- - n_timesteps
|
15 |
+
- 20000.0
|
16 |
+
- - normalize
|
17 |
+
- true
|
18 |
+
- - policy
|
19 |
+
- MultiInputPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[64, 64], n_critics=1)
|
22 |
+
- - replay_buffer_class
|
23 |
+
- HerReplayBuffer
|
24 |
+
- - replay_buffer_kwargs
|
25 |
+
- dict( goal_selection_strategy='future', n_sampled_goal=4 )
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bff981af17c438f4117ee01f3e06b2b1207c0d824cc6f32123060241d7f9b34
|
3 |
+
size 667356
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.0, "std_reward": 0.7745966692414834, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-03T16:38:14.219553"}
|
tqc-PandaReach-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e55336fbc4e0ced8e6d3f38e883007c2fd057f018816bc4d4494b5813cd00fef
|
3 |
+
size 212990
|
tqc-PandaReach-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
tqc-PandaReach-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1193b180ad69e6f9d79f77e67a8e6baacead55b77a01a2297c408c36c8d7253b
|
3 |
+
size 49565
|
tqc-PandaReach-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80fb23c6d493cc70f66da2f52c8bac19301384564d494ae40e610434a7281a66
|
3 |
+
size 59439
|
tqc-PandaReach-v3/data
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7fe5ef4eb880>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe5ef505140>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"net_arch": [
|
14 |
+
64,
|
15 |
+
64
|
16 |
+
],
|
17 |
+
"n_critics": 1,
|
18 |
+
"use_sde": false
|
19 |
+
},
|
20 |
+
"num_timesteps": 20000,
|
21 |
+
"_total_timesteps": 20000,
|
22 |
+
"_num_timesteps_at_start": 0,
|
23 |
+
"seed": 0,
|
24 |
+
"action_noise": null,
|
25 |
+
"start_time": 1696320824737719967,
|
26 |
+
"learning_rate": {
|
27 |
+
":type:": "<class 'function'>",
|
28 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
29 |
+
},
|
30 |
+
"tensorboard_log": null,
|
31 |
+
"_last_obs": null,
|
32 |
+
"_last_episode_starts": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_original_obs": {
|
37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAA570FPu7vMr3jT0U+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
40 |
+
"desired_goal": "[[ 0.13060723 -0.04368585 0.19268756]]",
|
41 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
42 |
+
},
|
43 |
+
"_episode_num": 4859,
|
44 |
+
"use_sde": false,
|
45 |
+
"sde_sample_freq": -1,
|
46 |
+
"_current_progress_remaining": 0.0,
|
47 |
+
"_stats_window_size": 100,
|
48 |
+
"ep_info_buffer": {
|
49 |
+
":type:": "<class 'collections.deque'>",
|
50 |
+
":serialized:": "gAWVFw0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAAAAAAAAACMAWyUSwOMAXSUR0BiMvvH93r2jAppc19zdWNjZXNzlIh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGIzfgJkXk5oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGIz+ZgG8mNoCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQGI1JI1+AmRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI10vXbudBoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI2TnA6+39oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI3CU5dWyVoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI3gogFHJ9oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGI3vci4axZoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI4QUg0TDhoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGI5OFxn3+NoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI54+0PYnRoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI6Wv0RODdoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI7Jm29cr1oCYh1fZQoaAZHwBAAAAAAAABoB0sFaAhHQGI8Wt2cJ+loCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGI8llbu+h5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI9R8lXzUZoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGI+RpUPxx1oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI+xL9MsYloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGI/PXTVlPJoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGI/6Mzdk8RoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJA6bF0gbJoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJBorWiDdxoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJCingpBopoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJDNZFG5MFoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJD+LNwBHVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJEuPFNtZVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJFce8wpONoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJF5MDfWMFoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJG5kTYdyVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJHk9+w1SBoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJIc3l0YCRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJJIQnQY1poCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJKJhF3IMloCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJK3aSLZSNoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJLUfYBeX1oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJL9/SYw7FoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJMuwX668RoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJNsEA5q/NoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJOJaRp1zRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJOzNUwSJ1oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJQDRtxdY5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJQwhW5paloCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJRo1k1/DtoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJSFrl/6O5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJTGOuJUHZoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJUCm/FirloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJUfkvK2a5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJVYQBgeBBoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJWGoBJZntoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJW0XP7el9oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJXu+ZgG8poCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJX9tdiUgVoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJYfY8Md95oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJZOFxn3+NoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJaL2QGOdZoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJa20JF9a5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJbkhA4XGhoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJcfMnqmj1oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJdZVfeDWdoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJeDEFW4mVoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJe+vIOpbVoCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJfNtqHoHNoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJf8i4axX5oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJgZezD4xloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJg6vRqoIhoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJha06YE4hoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJh3j+717JoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJixsEaESNoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJj3L3bmEJoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJkkZR8+idoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJlQUg0TDhoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJmJJXhfjVoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJm3oTwlSloCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJnVea8YhtoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJoRa5f+jxoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJouKGcnVpoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJpc63iJfpoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJqMA/9pAVoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJqpiRW915oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJrUb1h9b5oCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJrzqbBoEloCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJsgjIJZ4hoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJtOWa+evpoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJt6f8MuvloCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJu1rIo3JhoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJvfyPMjeNoCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJwUpEx7AtoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJwvCVKPGRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJxY8EFGG5oCYh1fZQoaAZHwAgAAAAAAABoB0sEaAhHQGJyRZU1hstoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJy5w4sEq5oCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJzhKtga3toCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ0Lqt5le5oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJ0bTlT3qRoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ1EJSiudRoCYh1fZQoaAZHv/AAAAAAAABoB0sCaAhHQGJ1gD7qIJtoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ2JqqOtGNoCYh1fZQoaAZHwAAAAAAAAABoB0sDaAhHQGJ2ysCDEm9oCYh1fZQoaAZHAAAAAAAAAABoB0sBaAhHQGJ3CILw4KhoCYh1ZS4="
|
51 |
+
},
|
52 |
+
"ep_success_buffer": {
|
53 |
+
":type:": "<class 'collections.deque'>",
|
54 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
|
55 |
+
},
|
56 |
+
"_n_updates": 19000,
|
57 |
+
"observation_space": {
|
58 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
59 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
60 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
61 |
+
"_shape": null,
|
62 |
+
"dtype": null,
|
63 |
+
"_np_random": null
|
64 |
+
},
|
65 |
+
"action_space": {
|
66 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
67 |
+
":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
68 |
+
"dtype": "float32",
|
69 |
+
"bounded_below": "[ True True True]",
|
70 |
+
"bounded_above": "[ True True True]",
|
71 |
+
"_shape": [
|
72 |
+
3
|
73 |
+
],
|
74 |
+
"low": "[-1. -1. -1.]",
|
75 |
+
"high": "[1. 1. 1.]",
|
76 |
+
"low_repr": "-1.0",
|
77 |
+
"high_repr": "1.0",
|
78 |
+
"_np_random": "Generator(PCG64)"
|
79 |
+
},
|
80 |
+
"n_envs": 1,
|
81 |
+
"buffer_size": 1,
|
82 |
+
"batch_size": 256,
|
83 |
+
"learning_starts": 1000,
|
84 |
+
"tau": 0.005,
|
85 |
+
"gamma": 0.95,
|
86 |
+
"gradient_steps": 1,
|
87 |
+
"optimize_memory_usage": false,
|
88 |
+
"replay_buffer_class": {
|
89 |
+
":type:": "<class 'abc.ABCMeta'>",
|
90 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
91 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
92 |
+
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
93 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x7fe5efa5dfc0>",
|
94 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7fe5efa5e050>",
|
95 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7fe5efa5e0e0>",
|
96 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x7fe5efa5e170>",
|
97 |
+
"add": "<function HerReplayBuffer.add at 0x7fe5efa5e200>",
|
98 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7fe5efa5e290>",
|
99 |
+
"sample": "<function HerReplayBuffer.sample at 0x7fe5efa5e320>",
|
100 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7fe5efa5e3b0>",
|
101 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7fe5efa5e440>",
|
102 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7fe5efa5e4d0>",
|
103 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7fe5efa5e560>",
|
104 |
+
"__abstractmethods__": "frozenset()",
|
105 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fe5efa63a80>"
|
106 |
+
},
|
107 |
+
"replay_buffer_kwargs": {
|
108 |
+
"goal_selection_strategy": "future",
|
109 |
+
"n_sampled_goal": 4
|
110 |
+
},
|
111 |
+
"train_freq": {
|
112 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
113 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
114 |
+
},
|
115 |
+
"use_sde_at_warmup": false,
|
116 |
+
"target_entropy": -3.0,
|
117 |
+
"ent_coef": "auto",
|
118 |
+
"target_update_interval": 1,
|
119 |
+
"top_quantiles_to_drop_per_net": 2,
|
120 |
+
"lr_schedule": {
|
121 |
+
":type:": "<class 'function'>",
|
122 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
123 |
+
},
|
124 |
+
"batch_norm_stats": [],
|
125 |
+
"batch_norm_stats_target": []
|
126 |
+
}
|
tqc-PandaReach-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f555dcf5477059ad10e18e782ccb572b9c1ef0eba704f80be2a8d157ae6a64b3
|
3 |
+
size 1507
|
tqc-PandaReach-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fc2c3d36f2f71fa12bfd49509a1a7895387c27d70591ea3771eef365ed62ae0
|
3 |
+
size 83177
|
tqc-PandaReach-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c96643b64fd79d0fd7e42695ba0df2960e2042290c3def2ed0a39c9058ad7386
|
3 |
+
size 747
|
tqc-PandaReach-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-84-generic-x86_64-with-glibc2.31 # 93~20.04.1-Ubuntu SMP Wed Sep 6 16:15:40 UTC 2023
|
2 |
+
- Python: 3.10.0
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a2f39aab6f66546c3a0f46afab5c6c2fa822c1e08d9d39d1b6a28a4e2af0352
|
3 |
+
size 113647
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd8b431486ee0bbb9d77167c98ef8e4ebd8f1dfd39907563bdc42c739e16766b
|
3 |
+
size 2722
|