File size: 2,091 Bytes
1146a54 b867c1f 1146a54 b867c1f 1146a54 b867c1f 1146a54 b867c1f 1146a54 b867c1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: senate_bills_summary_model
results: []
datasets:
- cheaptrix/UnitedStatesSenateBillsAndSummaries
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# senate_bills_summary_model
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9099
- Rouge1: 0.2477
- Rouge2: 0.1963
- Rougel: 0.2407
- Rougelsum: 0.2406
- Gen Len: 18.9992
## Model description
This model is a fine-tuned Google T5-Small model that is fine-tuned to summarize United States Senate Bills.
## Intended uses & limitations
Summarize United States Federal Legislation.
## Training and evaluation data
Trained on ~13.1k bills and summaries.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 14
- eval_batch_size: 14
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.2318 | 1.0 | 749 | 1.9710 | 0.2475 | 0.1952 | 0.2405 | 0.2402 | 18.9985 |
| 2.1782 | 2.0 | 1498 | 1.9331 | 0.2478 | 0.1959 | 0.2408 | 0.2406 | 18.9992 |
| 2.1355 | 3.0 | 2247 | 1.9141 | 0.2479 | 0.1961 | 0.2409 | 0.2407 | 18.9992 |
| 2.1079 | 4.0 | 2996 | 1.9099 | 0.2477 | 0.1963 | 0.2407 | 0.2406 | 18.9992 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |