### model | |
model_name_or_path: mistralai/Mistral-Nemo-Instruct-2407 | |
### method | |
stage: sft | |
do_train: true | |
finetuning_type: lora | |
lora_target: all | |
### dataset | |
dataset: bct_non_cot_sft_500 | |
dataset_dir: data_private | |
template: mistral | |
cutoff_len: 1024 | |
# max_samples: 1000 | |
overwrite_cache: true | |
preprocessing_num_workers: 16 | |
### output | |
output_dir: saves/Mistral-Nemo-12B-Instruct/lora/sft-half | |
logging_steps: 10 | |
save_steps: 500 | |
plot_loss: true | |
overwrite_output_dir: true | |
save_total_limit: 3 | |
load_best_model_at_end: true | |
push_to_hub: true | |
hub_model_id: chchen/Mistral-Nemo-12B-Instruct-SFT-Half | |
### train | |
per_device_train_batch_size: 2 | |
gradient_accumulation_steps: 8 | |
learning_rate: 0.000005 | |
num_train_epochs: 3.0 | |
lr_scheduler_type: cosine | |
warmup_ratio: 0.1 | |
fp16: true | |
### eval | |
val_size: 0.1 | |
per_device_eval_batch_size: 2 | |
evaluation_strategy: steps | |
eval_steps: 500 | |