File size: 1,782 Bytes
f1881a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: mit
base_model: charisgao/wnc-pretrain
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model

This model is a fine-tuned version of [charisgao/wnc-pretrain](https://huggingface.co/charisgao/wnc-pretrain) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7055
- Precision: 0.8153
- Recall: 0.905
- F1: 0.8578
- Accuracy: 0.8071

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.486         | 0.8547 | 100  | 0.5181          | 0.8224    | 0.8627 | 0.8421 | 0.7871   |
| 0.4273        | 1.7094 | 200  | 0.5258          | 0.8095    | 0.9167 | 0.8598 | 0.8032   |
| 0.3528        | 2.5641 | 300  | 0.7278          | 0.8072    | 0.8824 | 0.8431 | 0.7839   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3