chargoddard
commited on
Commit
·
2bece07
1
Parent(s):
0a07df8
Upload frankenmerge script
Browse files- frankenllama_22b.py +188 -0
frankenllama_22b.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Charles O. Goddard
|
3 |
+
# 7/20/2023
|
4 |
+
"""Script used to generate the base frankenmerge. Output will need fine-tuning to be useful."""
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
from torch import Tensor, nn
|
9 |
+
import transformers
|
10 |
+
|
11 |
+
from transformers.models.llama.modeling_llama import (
|
12 |
+
LlamaForCausalLM,
|
13 |
+
LlamaDecoderLayer,
|
14 |
+
)
|
15 |
+
from transformers import LlamaForCausalLM, LlamaConfig
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import transformers
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
|
22 |
+
MODEL_NAME_13B = "meta-llama/Llama-2-13b-hf" # primary model
|
23 |
+
MODEL_NAME_33B = "huggyllama/llama-30b" # donor
|
24 |
+
BLOCK_DIAGONAL = True
|
25 |
+
# If BLOCK_DIAGONAL is set to True, each tensor in the resultant model will form a
|
26 |
+
# block diagonal matrix, as illustrated below:
|
27 |
+
|
28 |
+
# a a a 0 0
|
29 |
+
# a a a 0 0
|
30 |
+
# a a a 0 0
|
31 |
+
# 0 0 0 b b
|
32 |
+
# 0 0 0 b b
|
33 |
+
|
34 |
+
# In this configuration, the states (hidden and intermediate) from the original
|
35 |
+
# and donor models are completely decoupled. That is, the hidden states
|
36 |
+
# corresponding to the original model remain unchanged, and the new dimensions
|
37 |
+
# added from the donor model do not depend on the hidden states of the original model.
|
38 |
+
|
39 |
+
# If BLOCK_DIAGONAL is set to False, the tensors will instead have the following form:
|
40 |
+
|
41 |
+
# a a a 0 0
|
42 |
+
# a a a 0 0
|
43 |
+
# a a a 0 0
|
44 |
+
# b b b b b
|
45 |
+
# b b b b b
|
46 |
+
|
47 |
+
# In this case, the output of the newly added attention heads depends on the hidden
|
48 |
+
# state values as if they were part of the donor model. Although the original model's
|
49 |
+
# hidden states remain unchanged in either case, interaction between the new and old
|
50 |
+
# features will result in features of varying usefulness.
|
51 |
+
|
52 |
+
|
53 |
+
class NoInit:
|
54 |
+
def __enter__(self):
|
55 |
+
def noop(*args, **kwargs):
|
56 |
+
pass
|
57 |
+
|
58 |
+
(k, u, n) = (
|
59 |
+
torch.nn.init.kaiming_uniform_,
|
60 |
+
torch.nn.init.uniform_,
|
61 |
+
torch.nn.init.normal_,
|
62 |
+
)
|
63 |
+
torch.nn.init.kaiming_uniform_ = noop
|
64 |
+
torch.nn.init.uniform_ = noop
|
65 |
+
torch.nn.init.normal_ = noop
|
66 |
+
|
67 |
+
transformers.modeling_utils._init_weights = False
|
68 |
+
self.funcs = (k, u, n)
|
69 |
+
|
70 |
+
def __exit__(self, *args):
|
71 |
+
(k, u, n) = self.funcs
|
72 |
+
(
|
73 |
+
torch.nn.init.kaiming_uniform_,
|
74 |
+
torch.nn.init.uniform_,
|
75 |
+
torch.nn.init.normal_,
|
76 |
+
) = (
|
77 |
+
k,
|
78 |
+
u,
|
79 |
+
n,
|
80 |
+
)
|
81 |
+
transformers.modeling_utils._init_weights = True
|
82 |
+
|
83 |
+
|
84 |
+
def format_kmb(n, digits=None):
|
85 |
+
n = int(n)
|
86 |
+
if n < 1000:
|
87 |
+
return str(n)
|
88 |
+
elif n < 1000_000:
|
89 |
+
return f"{round(n/1000, digits)}k"
|
90 |
+
elif n < 1000 * 1000 * 1000:
|
91 |
+
return f"{round(n/(1000*1000), digits)}m"
|
92 |
+
else:
|
93 |
+
return f"{round(n/(1000*1000*1000), digits)}b"
|
94 |
+
|
95 |
+
|
96 |
+
def count_params(model):
|
97 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
98 |
+
params = sum([np.prod(p.size()) for p in model_parameters])
|
99 |
+
return int(params)
|
100 |
+
|
101 |
+
|
102 |
+
torch.set_default_dtype(torch.float16)
|
103 |
+
|
104 |
+
config_13b: LlamaConfig = LlamaConfig.from_pretrained(MODEL_NAME_13B)
|
105 |
+
config_33b: LlamaConfig = LlamaConfig.from_pretrained(MODEL_NAME_33B)
|
106 |
+
config_more = copy.deepcopy(config_13b)
|
107 |
+
config_more.intermediate_size = config_33b.intermediate_size
|
108 |
+
config_more.hidden_size = config_33b.hidden_size
|
109 |
+
config_more.num_key_value_heads = config_33b.num_key_value_heads
|
110 |
+
config_more.num_attention_heads = config_33b.num_key_value_heads
|
111 |
+
|
112 |
+
print(config_more)
|
113 |
+
|
114 |
+
with NoInit():
|
115 |
+
model = LlamaForCausalLM(config_more)
|
116 |
+
|
117 |
+
print(f"{format_kmb(count_params(model), 3)} parameters")
|
118 |
+
|
119 |
+
|
120 |
+
def merge_tensors_inplace(dest: Tensor, s0: Tensor, s1: Tensor, block_diagonal: bool):
|
121 |
+
dest.zero_()
|
122 |
+
if block_diagonal:
|
123 |
+
dest[s0.shape[0] :, s0.shape[1] :] = s1[
|
124 |
+
s0.shape[0] : dest.shape[0],
|
125 |
+
s0.shape[1] : dest.shape[1],
|
126 |
+
]
|
127 |
+
else:
|
128 |
+
dest[s0.shape[0] :, :] = s1[
|
129 |
+
s0.shape[0] : dest.shape[0],
|
130 |
+
: dest.shape[1],
|
131 |
+
]
|
132 |
+
dest[: s0.shape[0], : s0.shape[1]] = s0
|
133 |
+
|
134 |
+
|
135 |
+
with NoInit():
|
136 |
+
donor_13b = (
|
137 |
+
LlamaForCausalLM.from_pretrained(MODEL_NAME_13B).to(torch.float16).eval()
|
138 |
+
)
|
139 |
+
donor_33b = (
|
140 |
+
LlamaForCausalLM.from_pretrained(MODEL_NAME_33B).to(torch.float16).eval()
|
141 |
+
)
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
for layer_idx in range(len(model.model.layers)):
|
145 |
+
layer: LlamaDecoderLayer = model.model.layers[layer_idx]
|
146 |
+
l13: LlamaDecoderLayer = donor_13b.model.layers[layer_idx]
|
147 |
+
l33: LlamaDecoderLayer = donor_33b.model.layers[layer_idx]
|
148 |
+
|
149 |
+
for name in ("q_proj", "k_proj", "v_proj", "o_proj"):
|
150 |
+
dest: nn.Linear = getattr(layer.self_attn, name)
|
151 |
+
s13: nn.Linear = getattr(l13.self_attn, name)
|
152 |
+
s33: nn.Linear = getattr(l33.self_attn, name)
|
153 |
+
merge_tensors_inplace(dest.weight, s13.weight, s33.weight, BLOCK_DIAGONAL)
|
154 |
+
|
155 |
+
for name in ("up_proj", "gate_proj", "down_proj"):
|
156 |
+
dest: nn.Linear = getattr(layer.mlp, name)
|
157 |
+
s13: nn.Linear = getattr(l13.mlp, name)
|
158 |
+
s33: nn.Linear = getattr(l33.mlp, name)
|
159 |
+
merge_tensors_inplace(dest.weight, s13.weight, s33.weight, BLOCK_DIAGONAL)
|
160 |
+
|
161 |
+
layer.input_layernorm.weight[:] = l33.input_layernorm.weight[
|
162 |
+
: layer.input_layernorm.weight.shape[0]
|
163 |
+
]
|
164 |
+
layer.input_layernorm.weight[
|
165 |
+
: l13.input_layernorm.weight.shape[0]
|
166 |
+
] = l13.input_layernorm.weight
|
167 |
+
layer.post_attention_layernorm.weight[:] = l33.post_attention_layernorm.weight[
|
168 |
+
: layer.post_attention_layernorm.weight.shape[0]
|
169 |
+
]
|
170 |
+
layer.post_attention_layernorm.weight[
|
171 |
+
: l13.post_attention_layernorm.weight.shape[0]
|
172 |
+
] = l13.post_attention_layernorm.weight
|
173 |
+
|
174 |
+
# have initial output depend on only original llama2-13b features, so model
|
175 |
+
# starts unimpaired and can learn to incorporate the new features as well
|
176 |
+
model.lm_head.weight.zero_()
|
177 |
+
model.lm_head.weight[
|
178 |
+
: donor_13b.lm_head.weight.shape[0], : donor_13b.lm_head.weight.shape[1]
|
179 |
+
] = donor_13b.lm_head.weight
|
180 |
+
|
181 |
+
merge_tensors_inplace(
|
182 |
+
model.model.embed_tokens.weight,
|
183 |
+
donor_13b.model.embed_tokens.weight,
|
184 |
+
donor_33b.model.embed_tokens.weight,
|
185 |
+
BLOCK_DIAGONAL,
|
186 |
+
)
|
187 |
+
|
188 |
+
model.save_pretrained("./llama2-22b/", safe_serialization=True)
|