ppo-LunarLander-v2 / config.json
chadlinden's picture
Upload PPO LunarLander-v2 trained agent
c00f9e6 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a7a29a54160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a7a29a541f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a7a29a54280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a7a29a54310>", "_build": "<function ActorCriticPolicy._build at 0x7a7a29a543a0>", "forward": "<function ActorCriticPolicy.forward at 0x7a7a29a54430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a7a29a544c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a7a29a54550>", "_predict": "<function ActorCriticPolicy._predict at 0x7a7a29a545e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a7a29a54670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a7a29a54700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a7a29a54790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a7a29a5d600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716313531089776953, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZEYj0p2Cm66BHWu7/Vtjgq5fo5G7F2OgAAgD8AAIA/ZucUvYXz87kcXjc7cp6wNi3CxDnQq1W6AACAPwAAgD9z7LK99hwpupA7jLm16om1NuUpunf1tDgAAIA/AACAPzPD8btfqI8/S0NlPaFtkb6y/ea8hPVGvAAAAAAAAAAAM4ZoPSkAZbpXrrY7HveftyTISrsO2pm2AACAPwAAgD9N8Ec9e4SLuhjfgruRJX817B7qOlD/4bQAAIA/AACAP02tcz02ujy8w/r6vKcvXb6PgDE7DapivgAAgD8AAIA/msXPPOi9oz6DfFC9mnpjvjw6H7x+eak9AAAAAAAAAAAmDIA9SPOrutj1CrpcQ0uz6XRwuiaRHDMAAIA/AACAP02Ycr30TJA/0p4YPc12gb7EApy8Y1ejPQAAAAAAAAAAZtanO3tus7parK+5HEWHtt7O9DkRYMk4AACAPwAAgD9mV3S9SNeLuqUHuLlDoS61vPWpOv7V1TgAAIA/AACAP2Ye4T1I66G6d3eUOz/IiTaN7M06G1N9NQAAAAAAAIA/2mZcPkrvTD8JVUi9jX5Vvil7pTtuMCw9AAAAAAAAAABm+HE9UhDEuWzBIjqLFFk2UsKJOoi7PbkAAIA/AACAP82NPz0pCHu6nVL8ORwBvDR31b26LXgTuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGT4i9AX2uiMAWyUTegDjAF0lEdAkU7G0VrRB3V9lChoBkdAZHLkT6BRRGgHTegDaAhHQJFVRivxH5J1fZQoaAZHQGD7Q8fV7QdoB03oA2gIR0CRVsq0MPSVdX2UKGgGR0BiayMPz4DcaAdN6ANoCEdAkVoyfHxSYXV9lChoBkdAYwBlp48lomgHTegDaAhHQJFga4Vh1DB1fZQoaAZHQGLRn8sMAm1oB03oA2gIR0CRYxt2LYPHdX2UKGgGR0Bj5TmOlwcYaAdN6ANoCEdAkWnIcWCVbHV9lChoBkdAYDYSjgydnWgHTegDaAhHQJFv0hGH58B1fZQoaAZHQGMsCw8nuzBoB03oA2gIR0CRcRDgIhQndX2UKGgGR0BmFxdfLLZBaAdN6ANoCEdAkXGl8kUsWnV9lChoBkdAYMCURFqi5GgHTegDaAhHQJFzmCdz4lB1fZQoaAZHQGTcoC+10DFoB03oA2gIR0CReq2L5ylvdX2UKGgGR0Aihgw482aVaAdL/WgIR0CRe9oduHerdX2UKGgGR0BhOZZ0Syt3aAdN6ANoCEdAkYPrm2b5M3V9lChoBkdAWV78Nx2jf2gHTegDaAhHQJGFFbpu/Dd1fZQoaAZHQGINcx0uDjBoB03oA2gIR0CRnbjo6jnFdX2UKGgGR0BhiReqrBCVaAdN6ANoCEdAkaLcohIOH3V9lChoBkdAYUrXOGCZnmgHTegDaAhHQJGkfHfdhy91fZQoaAZHQGeWd/8VHnVoB03oA2gIR0CRqvRL9MsZdX2UKGgGR0BmMMI3R5TqaAdN6ANoCEdAkay+rp7kXHV9lChoBkdAZIDbpNbkfmgHTegDaAhHQJGxJUvPC2t1fZQoaAZHQF2Y79hqj8FoB03oA2gIR0CRuK8WsRxtdX2UKGgGR0BlAvbRF7UoaAdN6ANoCEdAkbsI8Md92HV9lChoBkdAZeesJ6Y3N2gHTegDaAhHQJHG0K0D2al1fZQoaAZHQGRksgdOqNpoB03oA2gIR0CRyBOCXhOydX2UKGgGR0BdMiay8jA0aAdN6ANoCEdAkcieJ53Tu3V9lChoBkdAYkOwiaAnUmgHTegDaAhHQJHKQEZBLPF1fZQoaAZHQGXceC9RJmNoB03oA2gIR0CRz8WbPQfIdX2UKGgGR0BiS/dXT3IuaAdN6ANoCEdAkdCXcL0BfnV9lChoBkdAZERqmCROlGgHTegDaAhHQJHVzsIE8q51fZQoaAZHQGPMW606YE5oB03oA2gIR0CR1s4NqgyudX2UKGgGR0BkurvAoG6gaAdN6ANoCEdAkfGMVtXPq3V9lChoBkdAMnM9W6shgWgHS/loCEdAkfHjYdyT6nV9lChoBkdAYikYRdyDI2gHTegDaAhHQJH1w3zcynF1fZQoaAZHQGbBYs/Y8MdoB03oA2gIR0CR9x/y5I6KdX2UKGgGR0BfRSiEg4ffaAdN6ANoCEdAkfyy31BdEHV9lChoBkdAZreGC7K7qmgHTegDaAhHQJH98iRnvlV1fZQoaAZHQGVqg5q/M4doB03oA2gIR0CSANNrCWNWdX2UKGgGR0BOhChnJ1aGaAdNBQFoCEdAkgO6ltTDO3V9lChoBkdAYX3jp9qk/WgHTegDaAhHQJIFpj2Bas91fZQoaAZHQEkYqkM1CPZoB00RAWgIR0CSBb/oJRfndX2UKGgGR0BjbS5/b0voaAdN6ANoCEdAkgecUVSGanV9lChoBkdAZQ2nSfDk2mgHTegDaAhHQJIR0W69TP11fZQoaAZHQGD7hxo7FKloB03oA2gIR0CSEuC7sfJWdX2UKGgGR0BnTH3rUsnRaAdN6ANoCEdAkhNmGRFI/nV9lChoBkdAZF62Zy+6AmgHTegDaAhHQJIVQuJ1q351fZQoaAZHQGDElnZkCmxoB03oA2gIR0CSHkm7rcCYdX2UKGgGR0BhjgfIS13MaAdN6ANoCEdAkiTpJoTPB3V9lChoBkdAZCLeXzDn/2gHTegDaAhHQJIl+eOGTLZ1fZQoaAZHQDYHNzKcNH9oB00KAWgIR0CSKBgUDdP+dX2UKGgGR0BiaDH80k4WaAdN6ANoCEdAkj4bY5DJEHV9lChoBkdAZ1snk1dgOWgHTegDaAhHQJI+c287IT51fZQoaAZHQEO/eoDPnjhoB0v+aAhHQJJGOAUcn3N1fZQoaAZHQGCUqYAsCkpoB03oA2gIR0CSSqn5i3G5dX2UKGgGR0BnIdvAGjbjaAdN6ANoCEdAkkyD/ACW/3V9lChoBkdAY7ryeZof0WgHTegDaAhHQJJQsr5IpYt1fZQoaAZHQGcznM+u/1xoB03oA2gIR0CSVKx6fJ3gdX2UKGgGR0BiHphWo3rEaAdN6ANoCEdAklaadQO4G3V9lChoBkdAZMcdEsrd32gHTegDaAhHQJJWtekYXO51fZQoaAZHQGKwBUJfICFoB03oA2gIR0CSWI1vES/TdX2UKGgGR0BmJl3B55Z9aAdN6ANoCEdAkmLrL2YfGXV9lChoBkdAXn5yJbdJrmgHTegDaAhHQJJkDta6jFh1fZQoaAZHQGRvlp48loloB03oA2gIR0CSZJ8L8aXKdX2UKGgGR0Bj6KIBRyfdaAdN6ANoCEdAkm3U2pAD73V9lChoBkdAYZlRqoIfKmgHTegDaAhHQJJ0jOPeYUp1fZQoaAZHQGQHqNZNfw9oB03oA2gIR0CSeE1KXfIkdX2UKGgGR0Bi6EdtEXtTaAdN6ANoCEdAkn4QPmPo3nV9lChoBkdAZO2oKlYU4GgHTegDaAhHQJJ+lpudf9h1fZQoaAZHQGQBVrZamoBoB03oA2gIR0CSmtWo3rD7dX2UKGgGR0BkukupS75EaAdN6ANoCEdAkp71YyO7x3V9lChoBkdAYs8SDh99dGgHTegDaAhHQJKgZ7NSqER1fZQoaAZHQGEou+7Dl5poB03oA2gIR0CSo7tj0+TvdX2UKGgGR0Bk3kdzXBgvaAdN6ANoCEdAkqcl6eGwinV9lChoBkdAYzzMC9ytFWgHTegDaAhHQJKpUfRu0kZ1fZQoaAZHQGSp6IvalDZoB03oA2gIR0CSqW3mmtQsdX2UKGgGR0Bm8SubI91VaAdN6ANoCEdAkqudonKGL3V9lChoBkdAXj61kUbkwWgHTegDaAhHQJK5BIVdonN1fZQoaAZHQGEHr+PzWf9oB03oA2gIR0CSun0xdpqRdX2UKGgGR0Bf/nbEgntwaAdN6ANoCEdAkrs+ZCv5g3V9lChoBkdAX0eNkvsZ52gHTegDaAhHQJLEUbyYoiN1fZQoaAZHQGMsHPeHi3poB03oA2gIR0CSyrj3VTaTdX2UKGgGR0BjuhZMcp9aaAdN6ANoCEdAks5mGVRk3HV9lChoBkdAZD7ZfUnXumgHTegDaAhHQJLTMJjUd7x1fZQoaAZHQGTwTdk8RthoB03oA2gIR0CS05ViWmgrdX2UKGgGR0BfmbilzltCaAdN6ANoCEdAkvFoDklu33V9lChoBkdAZBsPVd5Y5mgHTegDaAhHQJL1pxgiNbV1fZQoaAZHQGGR1jAi3XtoB03oA2gIR0CS9x6zVtoBdX2UKGgGR0Bg5iQ/5ckdaAdN6ANoCEdAkvp94mkWRHV9lChoBkdAYKyzLwF1S2gHTegDaAhHQJL+H8ejmCB1fZQoaAZHQGblozN2TxJoB03oA2gIR0CTAFXuE25ydX2UKGgGR0BgqxMg2ZRbaAdN6ANoCEdAkwB2HgxagXV9lChoBkdAYWe8SPEKmmgHTegDaAhHQJMCiTq0MPV1fZQoaAZHQGG6dB8hLXdoB03oA2gIR0CTDh9tMwlCdX2UKGgGR0Blb/B7/n4gaAdN6ANoCEdAkw9FrqMWGnV9lChoBkdAYauGyon8bmgHTegDaAhHQJMP2T5ftyB1fZQoaAZHQGZGcwHqu8toB03oA2gIR0CTGKSpiqhldX2UKGgGR0Bh/yMJhOQAaAdN6ANoCEdAkyBv8Q7LdXV9lChoBkdAZxyYm9g4O2gHTegDaAhHQJMkBkbxVhl1fZQoaAZHQGKX3+l0o0BoB03oA2gIR0CTKG0h/y5JdX2UKGgGR0Bmt6c5Ke05aAdN6ANoCEdAkyjJCngpB3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}