File size: 1,729 Bytes
7add34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfef218
 
 
 
 
7add34a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfef218
7add34a
 
 
 
 
 
bfef218
 
 
7add34a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: camembert-base-finetuned-sentence-simplification-fr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# camembert-base-finetuned-sentence-simplification-fr

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5912
- Rouge1: 56.6081
- Rouge2: 31.7858
- Rougel: 48.4959
- Rougelsum: 56.6806

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 5.3993        | 1.0   | 188  | 1.4868          | 23.2843 | 6.9787  | 22.46   | 23.2664   |
| 1.2384        | 2.0   | 376  | 0.7450          | 47.5051 | 23.5773 | 42.2383 | 47.5388   |
| 0.8417        | 3.0   | 564  | 0.5912          | 56.6081 | 31.7858 | 48.4959 | 56.6806   |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1