add mask_first_token
Browse files- README.md +5 -1
- config.json +1 -0
- modeling_lsg_camembert.py +5 -0
README.md
CHANGED
@@ -51,13 +51,17 @@ You can change various parameters like :
|
|
51 |
Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix.
|
52 |
|
53 |
```python:
|
|
|
|
|
54 |
model = AutoModel.from_pretrained("ccdv/lsg-distilcamembert-base-4096",
|
55 |
trust_remote_code=True,
|
56 |
num_global_tokens=16,
|
57 |
block_size=64,
|
58 |
sparse_block_size=64,
|
59 |
-
sparsity_factor=4,
|
60 |
attention_probs_dropout_prob=0.0
|
|
|
|
|
|
|
61 |
)
|
62 |
```
|
63 |
|
|
|
51 |
Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix.
|
52 |
|
53 |
```python:
|
54 |
+
from transformers import AutoModel
|
55 |
+
|
56 |
model = AutoModel.from_pretrained("ccdv/lsg-distilcamembert-base-4096",
|
57 |
trust_remote_code=True,
|
58 |
num_global_tokens=16,
|
59 |
block_size=64,
|
60 |
sparse_block_size=64,
|
|
|
61 |
attention_probs_dropout_prob=0.0
|
62 |
+
sparsity_factor=4,
|
63 |
+
sparsity_type="none",
|
64 |
+
mask_first_token=True
|
65 |
)
|
66 |
```
|
67 |
|
config.json
CHANGED
@@ -28,6 +28,7 @@
|
|
28 |
"intermediate_size": 3072,
|
29 |
"layer_norm_eps": 1e-05,
|
30 |
"lsh_num_pre_rounds": 1,
|
|
|
31 |
"max_position_embeddings": 4098,
|
32 |
"model_type": "camembert",
|
33 |
"num_attention_heads": 12,
|
|
|
28 |
"intermediate_size": 3072,
|
29 |
"layer_norm_eps": 1e-05,
|
30 |
"lsh_num_pre_rounds": 1,
|
31 |
+
"mask_first_token": false,
|
32 |
"max_position_embeddings": 4098,
|
33 |
"model_type": "camembert",
|
34 |
"num_attention_heads": 12,
|
modeling_lsg_camembert.py
CHANGED
@@ -30,6 +30,7 @@ class LSGCamembertConfig(CamembertConfig):
|
|
30 |
base_model_prefix="lsg",
|
31 |
block_size=128,
|
32 |
lsh_num_pre_rounds=1,
|
|
|
33 |
num_global_tokens=1,
|
34 |
pool_with_global=True,
|
35 |
sparse_block_size=128,
|
@@ -45,6 +46,7 @@ class LSGCamembertConfig(CamembertConfig):
|
|
45 |
self.base_model_prefix = base_model_prefix
|
46 |
self.block_size = block_size
|
47 |
self.lsh_num_pre_rounds = lsh_num_pre_rounds
|
|
|
48 |
self.num_global_tokens = num_global_tokens
|
49 |
self.pool_with_global = pool_with_global
|
50 |
self.sparse_block_size = sparse_block_size
|
@@ -950,6 +952,7 @@ class LSGCamembertModel(LSGCamembertPreTrainedModel, RobertaModel):
|
|
950 |
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
|
951 |
self.block_size = config.block_size
|
952 |
self.adaptive = config.adaptive
|
|
|
953 |
self.pool_with_global = config.pool_with_global
|
954 |
|
955 |
self.embeddings = LSGCamembertEmbeddings(config)
|
@@ -986,6 +989,8 @@ class LSGCamembertModel(LSGCamembertPreTrainedModel, RobertaModel):
|
|
986 |
|
987 |
if attention_mask is None:
|
988 |
attention_mask = torch.ones(n, t, device=inputs_.device)
|
|
|
|
|
989 |
|
990 |
b = self.block_size * 2
|
991 |
pad = t % self.block_size
|
|
|
30 |
base_model_prefix="lsg",
|
31 |
block_size=128,
|
32 |
lsh_num_pre_rounds=1,
|
33 |
+
mask_first_token=False,
|
34 |
num_global_tokens=1,
|
35 |
pool_with_global=True,
|
36 |
sparse_block_size=128,
|
|
|
46 |
self.base_model_prefix = base_model_prefix
|
47 |
self.block_size = block_size
|
48 |
self.lsh_num_pre_rounds = lsh_num_pre_rounds
|
49 |
+
self.mask_first_token = mask_first_token
|
50 |
self.num_global_tokens = num_global_tokens
|
51 |
self.pool_with_global = pool_with_global
|
52 |
self.sparse_block_size = sparse_block_size
|
|
|
952 |
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
|
953 |
self.block_size = config.block_size
|
954 |
self.adaptive = config.adaptive
|
955 |
+
self.mask_first_token = config.mask_first_token
|
956 |
self.pool_with_global = config.pool_with_global
|
957 |
|
958 |
self.embeddings = LSGCamembertEmbeddings(config)
|
|
|
989 |
|
990 |
if attention_mask is None:
|
991 |
attention_mask = torch.ones(n, t, device=inputs_.device)
|
992 |
+
if self.mask_first_token:
|
993 |
+
attention_mask[:,0] = 0
|
994 |
|
995 |
b = self.block_size * 2
|
996 |
pad = t % self.block_size
|