add mask_first_token
Browse files- README.md +5 -1
- config.json +1 -0
- modeling_lsg_bart.py +6 -1
README.md
CHANGED
@@ -50,13 +50,17 @@ You can change various parameters like :
|
|
50 |
Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix.
|
51 |
|
52 |
```python:
|
|
|
|
|
53 |
model = AutoModel.from_pretrained("ccdv/lsg-bart-base-4096",
|
54 |
trust_remote_code=True,
|
55 |
num_global_tokens=16,
|
56 |
block_size=64,
|
57 |
sparse_block_size=64,
|
58 |
-
sparsity_factor=4,
|
59 |
attention_probs_dropout_prob=0.0
|
|
|
|
|
|
|
60 |
)
|
61 |
```
|
62 |
|
|
|
50 |
Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix.
|
51 |
|
52 |
```python:
|
53 |
+
from transformers import AutoModel
|
54 |
+
|
55 |
model = AutoModel.from_pretrained("ccdv/lsg-bart-base-4096",
|
56 |
trust_remote_code=True,
|
57 |
num_global_tokens=16,
|
58 |
block_size=64,
|
59 |
sparse_block_size=64,
|
|
|
60 |
attention_probs_dropout_prob=0.0
|
61 |
+
sparsity_factor=4,
|
62 |
+
sparsity_type="none",
|
63 |
+
mask_first_token=True
|
64 |
)
|
65 |
```
|
66 |
|
config.json
CHANGED
@@ -51,6 +51,7 @@
|
|
51 |
"LABEL_2": 2
|
52 |
},
|
53 |
"lsh_num_pre_rounds": 1,
|
|
|
54 |
"max_position_embeddings": 4096,
|
55 |
"model_type": "bart",
|
56 |
"no_repeat_ngram_size": 3,
|
|
|
51 |
"LABEL_2": 2
|
52 |
},
|
53 |
"lsh_num_pre_rounds": 1,
|
54 |
+
"mask_first_token": false,
|
55 |
"max_position_embeddings": 4096,
|
56 |
"model_type": "bart",
|
57 |
"no_repeat_ngram_size": 3,
|
modeling_lsg_bart.py
CHANGED
@@ -31,6 +31,7 @@ class LSGBartConfig(BartConfig):
|
|
31 |
base_model_prefix="lsg",
|
32 |
block_size=128,
|
33 |
lsh_num_pre_rounds=1,
|
|
|
34 |
num_global_tokens=1,
|
35 |
pass_global_tokens_to_decoder=True,
|
36 |
pool_with_global=True,
|
@@ -47,6 +48,7 @@ class LSGBartConfig(BartConfig):
|
|
47 |
self.base_model_prefix = base_model_prefix
|
48 |
self.block_size = block_size
|
49 |
self.lsh_num_pre_rounds = lsh_num_pre_rounds
|
|
|
50 |
self.num_global_tokens = num_global_tokens
|
51 |
self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder
|
52 |
self.pool_with_global = pool_with_global
|
@@ -711,6 +713,7 @@ class LSGBartEncoder(LSGBartPretrainedModel, BartEncoder):
|
|
711 |
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
|
712 |
self.block_size = config.block_size
|
713 |
self.adaptive = config.adaptive
|
|
|
714 |
self.pool_with_global = config.pool_with_global
|
715 |
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
|
716 |
|
@@ -737,7 +740,9 @@ class LSGBartEncoder(LSGBartPretrainedModel, BartEncoder):
|
|
737 |
|
738 |
if attention_mask is None:
|
739 |
attention_mask = torch.ones(n, t, device=inputs_.device)
|
740 |
-
|
|
|
|
|
741 |
b = self.block_size * 2
|
742 |
pad = t % self.block_size
|
743 |
|
|
|
31 |
base_model_prefix="lsg",
|
32 |
block_size=128,
|
33 |
lsh_num_pre_rounds=1,
|
34 |
+
mask_first_token=False,
|
35 |
num_global_tokens=1,
|
36 |
pass_global_tokens_to_decoder=True,
|
37 |
pool_with_global=True,
|
|
|
48 |
self.base_model_prefix = base_model_prefix
|
49 |
self.block_size = block_size
|
50 |
self.lsh_num_pre_rounds = lsh_num_pre_rounds
|
51 |
+
self.mask_first_token = mask_first_token
|
52 |
self.num_global_tokens = num_global_tokens
|
53 |
self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder
|
54 |
self.pool_with_global = pool_with_global
|
|
|
713 |
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
|
714 |
self.block_size = config.block_size
|
715 |
self.adaptive = config.adaptive
|
716 |
+
self.mask_first_token = config.mask_first_token
|
717 |
self.pool_with_global = config.pool_with_global
|
718 |
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
|
719 |
|
|
|
740 |
|
741 |
if attention_mask is None:
|
742 |
attention_mask = torch.ones(n, t, device=inputs_.device)
|
743 |
+
if self.mask_first_token:
|
744 |
+
attention_mask[:, 0] = 0
|
745 |
+
|
746 |
b = self.block_size * 2
|
747 |
pad = t % self.block_size
|
748 |
|