File size: 5,662 Bytes
5d1f63f f7ca61f 5d1f63f f7ca61f 5d1f63f f7ca61f 5d1f63f f7ca61f 5d1f63f 575beb1 e6e1f8a c1e50cf 9e434e1 e3d8143 f7ca61f 5d1f63f b706dc3 f7ca61f 5d1f63f f7ca61f 5d1f63f cc14f8f 5d1f63f f7ca61f 5d1f63f 352b05a 2baa52b 352b05a 2baa52b 352b05a 05fc736 5d1f63f f7ca61f 5d1f63f f7ca61f 5d1f63f f7ca61f aae4b08 f7ca61f 161d1b1 f7ca61f 5d1f63f f7ca61f 05fc736 f7ca61f 5d1f63f f7ca61f 5d1f63f 05fc736 5d1f63f 67a0ba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: llama3
base_model: catallama/CataLlama-v0.1-Base
tags:
- llama
- llama-3
- Catalan
model-index:
- name: CataLlama-v0.1-Instruct-SFT
results: []
datasets:
- catallama/Catalan-Instruct
language:
- ca
- en
pipeline_tag: text-generation
---
# NOTE: [CataLlama-v0.2](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead.
![](https://huggingface.co/catallama/CataLlama-v0.1-Instruct-DPO/resolve/main/CataLlama-v0.1.png)
# NOTE: [CataLlama-v0.2](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead.
# CataLlama-v0.1-Instruct-SFT
**CataLlama-v0.1-Instruct-SFT** is an instruct fine-tune of [catallama/CataLlama-v0.1-Base](https://huggingface.co/catallama/CataLlama-v0.1-Base) on the [catallama/Catalan-Instruct](https://huggingface.co/datasets/catallama/Catalan-Instruct) dataset.
CataLlama was trained on roughly **445 million new tokens** in three separate stages. This is the 2nd stage of the training.
The model shows improved proficiency with the Catalan language.
**This is an instruction fine-tuned model proficient on the following tasks in Catalan**
- *Information extraction (suitable for RAG)*
- *Named Entity Recognition (NER)*
- *Translation from English to Catalan and Catalan to English*
- *Summarization - both short form and long form*
- *Sentiment analysis*
The model achieves a loss rate of 0.8528 on the validation dataset after two epochs.
**NOTE:** The model was trained for one epoch on the `train` split of dataset and after manual evaluation, I decided to go for another epoch.
The first epoch logs every 100 steps while the second epoch logs every 200 steps, but I am pasting the train and eval losses for both epochs bellow.
*The `train` split of the dataset was shuffled before the second epoch. The `test` split dataset is identical in both epochs without shuffling*
**Model developers** [Laurentiu Petrea](https://www.linkedin.com/in/laurentiupetrea/) based on Llama-3 from Meta.
**Model Architecture** CataLlama is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and direct preference optimisation (DPO) to align with human preferences for helpfulness and safety.
**License** The model uses the llama-3 license available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
## Benchmarks
| Benchmark | Value |
| ------------------ | ------ |
| MMLU 5 shot | 55.28 |
| GSM8K cot 8 shot | 51.63 |
### Use with transformers
See the snippet below for usage with Transformers:
**The model follows the same prompt template as Llama-3 Instruct**
```python
import transformers
import torch
model_id = "catallama/CataLlama-v0.1-Instruct-SFT"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "Ei com estàs avui?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = pipeline(
prompt,
max_new_tokens=1024,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
## Training procedure
The model was trained **with the same prompt template of Llama-3 Instruct**.
The model was trained for two epochs on **6x A100 80GB GPUs using DeepSpeed ZeRO** State-3 without CPU offloading.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- distributed_type: multi-GPU
- num_devices: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
### Training results
**Epoch 1**
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0938 | 0.11 | 100 | 1.0779 |
| 1.0186 | 0.22 | 200 | 1.0209 |
| 1.0157 | 0.32 | 300 | 0.9808 |
| 0.9588 | 0.43 | 400 | 0.9489 |
| 0.9039 | 0.54 | 500 | 0.9244 |
| 0.9111 | 0.65 | 600 | 0.9086 |
| 0.8918 | 0.75 | 700 | 0.8961 |
| 0.8971 | 0.86 | 800 | 0.8886 |
| 0.8631 | 0.97 | 900 | 0.8846 |
**Epoch 2**
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8002 | 0.22 | 200 | 0.8989 |
| 0.8068 | 0.43 | 400 | 0.8835 |
| 0.7722 | 0.65 | 600 | 0.8654 |
| 0.7805 | 0.86 | 800 | 0.8528 |
## Intended Use
**Note:** This model is not intended to beat benchmarks, but to demonstrate techniques for augmenting LLMs on new languages and preserve rare languages as part of our world heritage.
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
|