File size: 2,794 Bytes
28567bf 6097554 28567bf 784f3ad bc17d05 784f3ad 5d367b7 784f3ad 5d367b7 784f3ad 5d367b7 784f3ad 5d367b7 784f3ad 5d367b7 784f3ad 5d367b7 784f3ad 5d367b7 784f3ad 53f3ec5 784f3ad bc17d05 784f3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: llama2
datasets:
- Tevatron/msmarco-passage-aug
language:
- en
library_name: peft
---
# RepLLaMA-7B-Passage
[Fine-Tuning LLaMA for Multi-Stage Text Retrieval](https://arxiv.org/abs/2310.08319).
Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, Jimmy Lin, arXiv 2023
This model is fine-tuned from LLaMA-2-7B using LoRA and the embedding size is 4096.
## Training Data
The model is fine-tuned on the training split of [MS MARCO Passage Ranking](https://microsoft.github.io/msmarco/Datasets) datasets for 1 epoch.
Please check our paper for details.
## Usage
Below is an example to encode a query and a passage, and then compute their similarity using their embedding.
```python
import torch
from transformers import AutoModel, AutoTokenizer
from peft import PeftModel, PeftConfig
def get_model(peft_model_name):
config = PeftConfig.from_pretrained(peft_model_name)
base_model = AutoModel.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(base_model, peft_model_name)
model = model.merge_and_unload()
model.eval()
return model
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
model = get_model('castorini/repllama-v1-7b-lora-passage')
# Define query and passage inputs
query = "What is llama?"
title = "Llama"
passage = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era."
query_input = tokenizer(f'query: {query}</s>', return_tensors='pt')
passage_input = tokenizer(f'passage: {title} {passage}</s>', return_tensors='pt')
# Run the model forward to compute embeddings and query-passage similarity score
with torch.no_grad():
# compute query embedding
query_outputs = model(**query_input)
query_embedding = query_outputs.last_hidden_state[0][-1]
query_embedding = torch.nn.functional.normalize(query_embedding, p=2, dim=0)
# compute passage embedding
passage_outputs = model(**passage_input)
passage_embeddings = passage_outputs.last_hidden_state[0][-1]
passage_embeddings = torch.nn.functional.normalize(passage_embeddings, p=2, dim=0)
# compute similarity score
score = torch.dot(query_embedding, passage_embeddings)
print(score)
```
## Batch inference and training
An unofficial replication of the inference and training code can be found [here](https://github.com/texttron/tevatron/tree/main/examples/repllama)
## Citation
If you find our paper or models helpful, please consider cite as follows:
```
@article{rankllama,
title={Fine-Tuning LLaMA for Multi-Stage Text Retrieval},
author={Xueguang Ma and Liang Wang and Nan Yang and Furu Wei and Jimmy Lin},
year={2023},
journal={arXiv:2310.08319},
}
``` |