PEFT
English
File size: 2,794 Bytes
28567bf
 
6097554
 
 
 
 
28567bf
784f3ad
 
 
 
bc17d05
784f3ad
 
 
 
5d367b7
 
 
 
784f3ad
 
5d367b7
784f3ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d367b7
784f3ad
 
 
 
5d367b7
784f3ad
5d367b7
784f3ad
 
 
 
 
 
5d367b7
 
 
 
784f3ad
 
5d367b7
784f3ad
 
 
53f3ec5
 
 
784f3ad
 
 
 
 
 
bc17d05
 
 
 
 
 
784f3ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: llama2
datasets:
- Tevatron/msmarco-passage-aug
language:
- en
library_name: peft
---


# RepLLaMA-7B-Passage

[Fine-Tuning LLaMA for Multi-Stage Text Retrieval](https://arxiv.org/abs/2310.08319).
Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, Jimmy Lin, arXiv 2023

This model is fine-tuned from LLaMA-2-7B using LoRA and the embedding size is 4096.

## Training Data
The model is fine-tuned on the training split of [MS MARCO Passage Ranking](https://microsoft.github.io/msmarco/Datasets) datasets for 1 epoch.
Please check our paper for details.

## Usage

Below is an example to encode a query and a passage, and then compute their similarity using their embedding.

```python
import torch
from transformers import AutoModel, AutoTokenizer
from peft import PeftModel, PeftConfig

def get_model(peft_model_name):
    config = PeftConfig.from_pretrained(peft_model_name)
    base_model = AutoModel.from_pretrained(config.base_model_name_or_path)
    model = PeftModel.from_pretrained(base_model, peft_model_name)
    model = model.merge_and_unload()
    model.eval()
    return model

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
model = get_model('castorini/repllama-v1-7b-lora-passage')

# Define query and passage inputs
query = "What is llama?"
title = "Llama"
passage = "The llama is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era."
query_input = tokenizer(f'query: {query}</s>', return_tensors='pt')
passage_input = tokenizer(f'passage: {title} {passage}</s>', return_tensors='pt')

# Run the model forward to compute embeddings and query-passage similarity score
with torch.no_grad():
    # compute query embedding
    query_outputs = model(**query_input)
    query_embedding = query_outputs.last_hidden_state[0][-1]
    query_embedding = torch.nn.functional.normalize(query_embedding, p=2, dim=0)

    # compute passage embedding
    passage_outputs = model(**passage_input)
    passage_embeddings = passage_outputs.last_hidden_state[0][-1]
    passage_embeddings = torch.nn.functional.normalize(passage_embeddings, p=2, dim=0)

    # compute similarity score
    score = torch.dot(query_embedding, passage_embeddings)
    print(score)

```
## Batch inference and training
An unofficial replication of the inference and training code can be found [here](https://github.com/texttron/tevatron/tree/main/examples/repllama)


## Citation

If you find our paper or models helpful, please consider cite as follows:

```
@article{rankllama,
      title={Fine-Tuning LLaMA for Multi-Stage Text Retrieval}, 
      author={Xueguang Ma and Liang Wang and Nan Yang and Furu Wei and Jimmy Lin},
      year={2023},
      journal={arXiv:2310.08319},
}
```