carolanderson commited on
Commit
b6878f8
·
1 Parent(s): c82848e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -1
README.md CHANGED
@@ -3,4 +3,33 @@ license: mit
3
  language:
4
  - en
5
  library_name: transformers
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  language:
4
  - en
5
  library_name: transformers
6
+ ---
7
+ # Model Card for Model ID carolanderson/roberta-base-food-ner
8
+
9
+ ## Model Details
10
+ ### Model Description
11
+ Model for tagging mentions of food in the text of recipes. Trained by fine tuning RoBERTa base on a set of about 300 hand-labeled recipes derived from [this dataset from Kaggle.](https://www.kaggle.com/hugodarwood/epirecipes). Achieves an F1 score 0f 0.96 on the custom validation set.
12
+
13
+ - **Developed by:** Carol Anderson
14
+ - **Shared by:** Carol Anderson
15
+ - **Language(s) (NLP):** English
16
+ - **License:** MIT
17
+ - **Finetuned from model:** [roberta-base](https://huggingface.co/roberta-base)
18
+
19
+ ### Model Sources
20
+ - **Repository:** [carolmanderson/food](https://github.com/carolmanderson/food/tree/master)
21
+ - **Demo:** [food-ner](https://huggingface.co/spaces/carolanderson/food-ner)
22
+
23
+ ## How to Get Started with the Model
24
+
25
+ Use the code below to get started with the model.
26
+
27
+ ```
28
+ from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
29
+ model = AutoModelForTokenClassification.from_pretrained('carolanderson/roberta-base-food-ner')
30
+ tokenizer = AutoTokenizer.from_pretrained("roberta-base", add_prefix_space=True)
31
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
32
+ example = "Saute the onions in olive oil until browned."
33
+ results = nlp(example, aggregation_strategy="first")
34
+
35
+ ```