cardiffnlp
commited on
Commit
โข
2508de5
1
Parent(s):
1565dd4
Adding twitter-xlm sentiment classifiers
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# twitter-XLM-roBERTa-base for Sentiment Analysis
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
TODO: create model card
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis with the TweetEval benchmark.
|
14 |
+
|
15 |
+
- Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
16 |
+
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
17 |
+
|
18 |
+
## Example of classification
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForSequenceClassification
|
22 |
+
from transformers import TFAutoModelForSequenceClassification
|
23 |
+
from transformers import AutoTokenizer
|
24 |
+
import numpy as np
|
25 |
+
from scipy.special import softmax
|
26 |
+
import csv
|
27 |
+
import urllib.request
|
28 |
+
|
29 |
+
# Preprocess text (username and link placeholders)
|
30 |
+
def preprocess(text):
|
31 |
+
new_text = []
|
32 |
+
|
33 |
+
|
34 |
+
for t in text.split(" "):
|
35 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
36 |
+
t = 'http' if t.startswith('http') else t
|
37 |
+
new_text.append(t)
|
38 |
+
return " ".join(new_text)
|
39 |
+
|
40 |
+
# Tasks:
|
41 |
+
# emoji, emotion, hate, irony, offensive, sentiment
|
42 |
+
# stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary
|
43 |
+
|
44 |
+
task='sentiment'
|
45 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-{task}"
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
48 |
+
|
49 |
+
# download label mapping
|
50 |
+
labels=[]
|
51 |
+
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt"
|
52 |
+
with urllib.request.urlopen(mapping_link) as f:
|
53 |
+
html = f.read().decode('utf-8').split("\
|
54 |
+
")
|
55 |
+
csvreader = csv.reader(html, delimiter='\\t')
|
56 |
+
labels = [row[1] for row in csvreader if len(row) > 1]
|
57 |
+
|
58 |
+
# PT
|
59 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
60 |
+
model.save_pretrained(MODEL)
|
61 |
+
|
62 |
+
text = "Good night ๐"
|
63 |
+
text = preprocess(text)
|
64 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
65 |
+
output = model(**encoded_input)
|
66 |
+
scores = output[0][0].detach().numpy()
|
67 |
+
scores = softmax(scores)
|
68 |
+
|
69 |
+
# # TF
|
70 |
+
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
71 |
+
# model.save_pretrained(MODEL)
|
72 |
+
|
73 |
+
# text = "Good night ๐"
|
74 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
75 |
+
# output = model(encoded_input)
|
76 |
+
# scores = output[0][0].numpy()
|
77 |
+
# scores = softmax(scores)
|
78 |
+
|
79 |
+
ranking = np.argsort(scores)
|
80 |
+
ranking = ranking[::-1]
|
81 |
+
for i in range(scores.shape[0]):
|
82 |
+
l = labels[ranking[i]]
|
83 |
+
s = scores[ranking[i]]
|
84 |
+
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
85 |
+
|
86 |
+
```
|
87 |
+
|
88 |
+
Output:
|
89 |
+
|
90 |
+
```
|
91 |
+
1) positive 0.8466
|
92 |
+
2) neutral 0.1458
|
93 |
+
3) negative 0.0076
|
94 |
+
```
|
95 |
+
|