File size: 1,876 Bytes
820263b 878f515 8de53f6 878f515 8de53f6 878f515 820263b 878f515 820263b 878f515 820263b e362dc6 820263b 878f515 9e65cd5 878f515 820263b 878f515 820263b 878f515 820263b 878f515 820263b 878f515 9e65cd5 878f515 820263b 878f515 820263b 73abc83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
language:
- en
license: mit
datasets:
- cardiffnlp/x_sensitive
metrics:
- f1
widget:
- text: Call me today to earn some money mofos!
pipeline_tag: text-classification
---
# twitter-roberta-base-sensitive-binary
This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for detecting sensitive content (multilabel classification) on the [_X-Sensitive_](https://huggingface.co/datasets/cardiffnlp/x_sensitive) dataset.
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).
A sensitive content binary model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-sensitive-binary).
## Labels
```
"id2label": {
"0": "conflictual",
"1": "profanity",
"2": "sex",
"3": "drugs",
"4": "selfharm",
"5": "spam",
"6": "not-sensitive"
}
```
## Full classification example
```python
from transformers import pipeline
pipe = pipeline(model='cardiffnlp/twitter-roberta-large-sensitive-multilabel')
text = "Call me today to earn some money mofos!"
pipe(text)
```
Output:
```
[[{'label': 'conflictual', 'score': 0.03700090944766998},
{'label': 'profanity', 'score': 0.9770461916923523},
{'label': 'sex', 'score': 0.01981434039771557},
{'label': 'drugs', 'score': 0.017757439985871315},
{'label': 'selfharm', 'score': 0.008804548531770706},
{'label': 'spam', 'score': 0.07784222811460495},
{'label': 'not-sensitive', 'score': 0.010364986956119537}]]
```
## BibTeX entry and citation info
```
@article{antypas2024sensitive,
title={Sensitive Content Classification in Social Media: A Holistic Resource and Evaluation},
author={Antypas, Dimosthenis and Sen, Indira and Perez-Almendros, Carla and Camacho-Collados, Jose and Barbieri, Francesco},
journal={arXiv preprint arXiv:2411.19832},
year={2024}
}
``` |