camenduru's picture
thanks to show ❤
3bbb319
raw
history blame
No virus
12.4 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
from argparse import ArgumentParser
from multiprocessing import Pool
import matplotlib.pyplot as plt
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
def makeplot(rs, ps, outDir, class_name, iou_type):
cs = np.vstack([
np.ones((2, 3)),
np.array([0.31, 0.51, 0.74]),
np.array([0.75, 0.31, 0.30]),
np.array([0.36, 0.90, 0.38]),
np.array([0.50, 0.39, 0.64]),
np.array([1, 0.6, 0]),
])
areaNames = ['allarea', 'small', 'medium', 'large']
types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN']
for i in range(len(areaNames)):
area_ps = ps[..., i, 0]
figure_title = iou_type + '-' + class_name + '-' + areaNames[i]
aps = [ps_.mean() for ps_ in area_ps]
ps_curve = [
ps_.mean(axis=1) if ps_.ndim > 1 else ps_ for ps_ in area_ps
]
ps_curve.insert(0, np.zeros(ps_curve[0].shape))
fig = plt.figure()
ax = plt.subplot(111)
for k in range(len(types)):
ax.plot(rs, ps_curve[k + 1], color=[0, 0, 0], linewidth=0.5)
ax.fill_between(
rs,
ps_curve[k],
ps_curve[k + 1],
color=cs[k],
label=str(f'[{aps[k]:.3f}]' + types[k]),
)
plt.xlabel('recall')
plt.ylabel('precision')
plt.xlim(0, 1.0)
plt.ylim(0, 1.0)
plt.title(figure_title)
plt.legend()
# plt.show()
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def autolabel(ax, rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
if height > 0 and height <= 1: # for percent values
text_label = '{:2.0f}'.format(height * 100)
else:
text_label = '{:2.0f}'.format(height)
ax.annotate(
text_label,
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords='offset points',
ha='center',
va='bottom',
fontsize='x-small',
)
def makebarplot(rs, ps, outDir, class_name, iou_type):
areaNames = ['allarea', 'small', 'medium', 'large']
types = ['C75', 'C50', 'Loc', 'Sim', 'Oth', 'BG', 'FN']
fig, ax = plt.subplots()
x = np.arange(len(areaNames)) # the areaNames locations
width = 0.60 # the width of the bars
rects_list = []
figure_title = iou_type + '-' + class_name + '-' + 'ap bar plot'
for i in range(len(types) - 1):
type_ps = ps[i, ..., 0]
aps = [ps_.mean() for ps_ in type_ps.T]
rects_list.append(
ax.bar(
x - width / 2 + (i + 1) * width / len(types),
aps,
width / len(types),
label=types[i],
))
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Mean Average Precision (mAP)')
ax.set_title(figure_title)
ax.set_xticks(x)
ax.set_xticklabels(areaNames)
ax.legend()
# Add score texts over bars
for rects in rects_list:
autolabel(ax, rects)
# Save plot
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def get_gt_area_group_numbers(cocoEval):
areaRng = cocoEval.params.areaRng
areaRngStr = [str(aRng) for aRng in areaRng]
areaRngLbl = cocoEval.params.areaRngLbl
areaRngStr2areaRngLbl = dict(zip(areaRngStr, areaRngLbl))
areaRngLbl2Number = dict.fromkeys(areaRngLbl, 0)
for evalImg in cocoEval.evalImgs:
if evalImg:
for gtIgnore in evalImg['gtIgnore']:
if not gtIgnore:
aRngLbl = areaRngStr2areaRngLbl[str(evalImg['aRng'])]
areaRngLbl2Number[aRngLbl] += 1
return areaRngLbl2Number
def make_gt_area_group_numbers_plot(cocoEval, outDir, verbose=True):
areaRngLbl2Number = get_gt_area_group_numbers(cocoEval)
areaRngLbl = areaRngLbl2Number.keys()
if verbose:
print('number of annotations per area group:', areaRngLbl2Number)
# Init figure
fig, ax = plt.subplots()
x = np.arange(len(areaRngLbl)) # the areaNames locations
width = 0.60 # the width of the bars
figure_title = 'number of annotations per area group'
rects = ax.bar(x, areaRngLbl2Number.values(), width)
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Number of annotations')
ax.set_title(figure_title)
ax.set_xticks(x)
ax.set_xticklabels(areaRngLbl)
# Add score texts over bars
autolabel(ax, rects)
# Save plot
fig.tight_layout()
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def make_gt_area_histogram_plot(cocoEval, outDir):
n_bins = 100
areas = [ann['area'] for ann in cocoEval.cocoGt.anns.values()]
# init figure
figure_title = 'gt annotation areas histogram plot'
fig, ax = plt.subplots()
# Set the number of bins
ax.hist(np.sqrt(areas), bins=n_bins)
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_xlabel('Squareroot Area')
ax.set_ylabel('Number of annotations')
ax.set_title(figure_title)
# Save plot
fig.tight_layout()
fig.savefig(outDir + f'/{figure_title}.png')
plt.close(fig)
def analyze_individual_category(k,
cocoDt,
cocoGt,
catId,
iou_type,
areas=None):
nm = cocoGt.loadCats(catId)[0]
print(f'--------------analyzing {k + 1}-{nm["name"]}---------------')
ps_ = {}
dt = copy.deepcopy(cocoDt)
nm = cocoGt.loadCats(catId)[0]
imgIds = cocoGt.getImgIds()
dt_anns = dt.dataset['annotations']
select_dt_anns = []
for ann in dt_anns:
if ann['category_id'] == catId:
select_dt_anns.append(ann)
dt.dataset['annotations'] = select_dt_anns
dt.createIndex()
# compute precision but ignore superclass confusion
gt = copy.deepcopy(cocoGt)
child_catIds = gt.getCatIds(supNms=[nm['supercategory']])
for idx, ann in enumerate(gt.dataset['annotations']):
if ann['category_id'] in child_catIds and ann['category_id'] != catId:
gt.dataset['annotations'][idx]['ignore'] = 1
gt.dataset['annotations'][idx]['iscrowd'] = 1
gt.dataset['annotations'][idx]['category_id'] = catId
cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
cocoEval.params.imgIds = imgIds
cocoEval.params.maxDets = [100]
cocoEval.params.iouThrs = [0.1]
cocoEval.params.useCats = 1
if areas:
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
[areas[0], areas[1]], [areas[1], areas[2]]]
cocoEval.evaluate()
cocoEval.accumulate()
ps_supercategory = cocoEval.eval['precision'][0, :, k, :, :]
ps_['ps_supercategory'] = ps_supercategory
# compute precision but ignore any class confusion
gt = copy.deepcopy(cocoGt)
for idx, ann in enumerate(gt.dataset['annotations']):
if ann['category_id'] != catId:
gt.dataset['annotations'][idx]['ignore'] = 1
gt.dataset['annotations'][idx]['iscrowd'] = 1
gt.dataset['annotations'][idx]['category_id'] = catId
cocoEval = COCOeval(gt, copy.deepcopy(dt), iou_type)
cocoEval.params.imgIds = imgIds
cocoEval.params.maxDets = [100]
cocoEval.params.iouThrs = [0.1]
cocoEval.params.useCats = 1
if areas:
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
[areas[0], areas[1]], [areas[1], areas[2]]]
cocoEval.evaluate()
cocoEval.accumulate()
ps_allcategory = cocoEval.eval['precision'][0, :, k, :, :]
ps_['ps_allcategory'] = ps_allcategory
return k, ps_
def analyze_results(res_file,
ann_file,
res_types,
out_dir,
extraplots=None,
areas=None):
for res_type in res_types:
assert res_type in ['bbox', 'segm']
if areas:
assert len(areas) == 3, '3 integers should be specified as areas, \
representing 3 area regions'
directory = os.path.dirname(out_dir + '/')
if not os.path.exists(directory):
print(f'-------------create {out_dir}-----------------')
os.makedirs(directory)
cocoGt = COCO(ann_file)
cocoDt = cocoGt.loadRes(res_file)
imgIds = cocoGt.getImgIds()
for res_type in res_types:
res_out_dir = out_dir + '/' + res_type + '/'
res_directory = os.path.dirname(res_out_dir)
if not os.path.exists(res_directory):
print(f'-------------create {res_out_dir}-----------------')
os.makedirs(res_directory)
iou_type = res_type
cocoEval = COCOeval(
copy.deepcopy(cocoGt), copy.deepcopy(cocoDt), iou_type)
cocoEval.params.imgIds = imgIds
cocoEval.params.iouThrs = [0.75, 0.5, 0.1]
cocoEval.params.maxDets = [100]
if areas:
cocoEval.params.areaRng = [[0**2, areas[2]], [0**2, areas[0]],
[areas[0], areas[1]],
[areas[1], areas[2]]]
cocoEval.evaluate()
cocoEval.accumulate()
ps = cocoEval.eval['precision']
ps = np.vstack([ps, np.zeros((4, *ps.shape[1:]))])
catIds = cocoGt.getCatIds()
recThrs = cocoEval.params.recThrs
with Pool(processes=48) as pool:
args = [(k, cocoDt, cocoGt, catId, iou_type, areas)
for k, catId in enumerate(catIds)]
analyze_results = pool.starmap(analyze_individual_category, args)
for k, catId in enumerate(catIds):
nm = cocoGt.loadCats(catId)[0]
print(f'--------------saving {k + 1}-{nm["name"]}---------------')
analyze_result = analyze_results[k]
assert k == analyze_result[0]
ps_supercategory = analyze_result[1]['ps_supercategory']
ps_allcategory = analyze_result[1]['ps_allcategory']
# compute precision but ignore superclass confusion
ps[3, :, k, :, :] = ps_supercategory
# compute precision but ignore any class confusion
ps[4, :, k, :, :] = ps_allcategory
# fill in background and false negative errors and plot
ps[ps == -1] = 0
ps[5, :, k, :, :] = ps[4, :, k, :, :] > 0
ps[6, :, k, :, :] = 1.0
makeplot(recThrs, ps[:, :, k], res_out_dir, nm['name'], iou_type)
if extraplots:
makebarplot(recThrs, ps[:, :, k], res_out_dir, nm['name'],
iou_type)
makeplot(recThrs, ps, res_out_dir, 'allclass', iou_type)
if extraplots:
makebarplot(recThrs, ps, res_out_dir, 'allclass', iou_type)
make_gt_area_group_numbers_plot(
cocoEval=cocoEval, outDir=res_out_dir, verbose=True)
make_gt_area_histogram_plot(cocoEval=cocoEval, outDir=res_out_dir)
def main():
parser = ArgumentParser(description='COCO Error Analysis Tool')
parser.add_argument('result', help='result file (json format) path')
parser.add_argument('out_dir', help='dir to save analyze result images')
parser.add_argument(
'--ann',
default='data/coco/annotations/instances_val2017.json',
help='annotation file path')
parser.add_argument(
'--types', type=str, nargs='+', default=['bbox'], help='result types')
parser.add_argument(
'--extraplots',
action='store_true',
help='export extra bar/stat plots')
parser.add_argument(
'--areas',
type=int,
nargs='+',
default=[1024, 9216, 10000000000],
help='area regions')
args = parser.parse_args()
analyze_results(
args.result,
args.ann,
args.types,
out_dir=args.out_dir,
extraplots=args.extraplots,
areas=args.areas)
if __name__ == '__main__':
main()