instant-ngp / src /testbed.cu
camenduru's picture
instant-ngp build
7873319
raw
history blame contribute delete
117 kB
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved.
*
* NVIDIA CORPORATION and its licensors retain all intellectual property
* and proprietary rights in and to this software, related documentation
* and any modifications thereto. Any use, reproduction, disclosure or
* distribution of this software and related documentation without an express
* license agreement from NVIDIA CORPORATION is strictly prohibited.
*/
/** @file testbed.cu
* @author Thomas Müller & Alex Evans, NVIDIA
*/
#include <neural-graphics-primitives/common_device.cuh>
#include <neural-graphics-primitives/common.h>
#include <neural-graphics-primitives/json_binding.h>
#include <neural-graphics-primitives/marching_cubes.h>
#include <neural-graphics-primitives/nerf_loader.h>
#include <neural-graphics-primitives/nerf_network.h>
#include <neural-graphics-primitives/render_buffer.h>
#include <neural-graphics-primitives/takikawa_encoding.cuh>
#include <neural-graphics-primitives/testbed.h>
#include <neural-graphics-primitives/tinyexr_wrapper.h>
#include <neural-graphics-primitives/trainable_buffer.cuh>
#include <neural-graphics-primitives/triangle_bvh.cuh>
#include <neural-graphics-primitives/triangle_octree.cuh>
#include <tiny-cuda-nn/encodings/grid.h>
#include <tiny-cuda-nn/loss.h>
#include <tiny-cuda-nn/network_with_input_encoding.h>
#include <tiny-cuda-nn/network.h>
#include <tiny-cuda-nn/optimizer.h>
#include <tiny-cuda-nn/trainer.h>
#include <json/json.hpp>
#include <filesystem/directory.h>
#include <filesystem/path.h>
#include <fstream>
#include <set>
#ifdef NGP_GUI
# include <imgui/imgui.h>
# include <imgui/backends/imgui_impl_glfw.h>
# include <imgui/backends/imgui_impl_opengl3.h>
# include <imguizmo/ImGuizmo.h>
# include <stb_image/stb_image.h>
# ifdef _WIN32
# include <GL/gl3w.h>
# else
# include <GL/glew.h>
# endif
# include <GLFW/glfw3.h>
# include <cuda_gl_interop.h>
#endif
// Windows.h is evil
#undef min
#undef max
#undef near
#undef far
using namespace Eigen;
using namespace std::literals::chrono_literals;
using namespace tcnn;
namespace fs = filesystem;
NGP_NAMESPACE_BEGIN
std::atomic<size_t> g_total_n_bytes_allocated{0};
json merge_parent_network_config(const json &child, const fs::path &child_filename) {
if (!child.contains("parent")) {
return child;
}
fs::path parent_filename = child_filename.parent_path() / std::string(child["parent"]);
tlog::info() << "Loading parent network config from: " << parent_filename.str();
std::ifstream f{parent_filename.str()};
json parent = json::parse(f, nullptr, true, true);
parent = merge_parent_network_config(parent, parent_filename);
parent.merge_patch(child);
return parent;
}
static bool ends_with(const std::string& str, const std::string& ending) {
if (ending.length() > str.length()) {
return false;
}
return std::equal(std::rbegin(ending), std::rend(ending), std::rbegin(str));
}
void Testbed::load_training_data(const std::string& data_path) {
m_data_path = data_path;
if (!m_data_path.exists()) {
throw std::runtime_error{fmt::format("Data path {} does not exist.", m_data_path.str())};
}
switch (m_testbed_mode) {
case ETestbedMode::Nerf: load_nerf(); break;
case ETestbedMode::Sdf: load_mesh(); break;
case ETestbedMode::Image: load_image(); break;
case ETestbedMode::Volume: load_volume(); break;
default: throw std::runtime_error{"Invalid testbed mode."};
}
m_training_data_available = true;
}
void Testbed::clear_training_data() {
m_training_data_available = false;
m_nerf.training.dataset.metadata.clear();
}
json Testbed::load_network_config(const fs::path& network_config_path) {
if (!network_config_path.empty()) {
m_network_config_path = network_config_path;
}
tlog::info() << "Loading network config from: " << network_config_path;
if (network_config_path.empty() || !network_config_path.exists()) {
throw std::runtime_error{fmt::format("Network config {} does not exist.", network_config_path.str())};
}
json result;
if (equals_case_insensitive(network_config_path.extension(), "json")) {
std::ifstream f{network_config_path.str()};
result = json::parse(f, nullptr, true, true);
result = merge_parent_network_config(result, network_config_path);
} else if (equals_case_insensitive(network_config_path.extension(), "msgpack")) {
std::ifstream f{network_config_path.str(), std::ios::in | std::ios::binary};
result = json::from_msgpack(f);
// we assume parent pointers are already resolved in snapshots.
}
return result;
}
void Testbed::reload_network_from_file(const std::string& network_config_path) {
if (!network_config_path.empty()) {
m_network_config_path = network_config_path;
}
m_network_config = load_network_config(m_network_config_path);
reset_network();
}
void Testbed::reload_network_from_json(const json& json, const std::string& config_base_path) {
// config_base_path is needed so that if the passed in json uses the 'parent' feature, we know where to look...
// be sure to use a filename, or if a directory, end with a trailing slash
m_network_config = merge_parent_network_config(json, config_base_path);
reset_network();
}
void Testbed::handle_file(const std::string& file) {
if (ends_with(file, ".msgpack")) {
load_snapshot(file);
}
else if (ends_with(file, ".json")) {
reload_network_from_file(file);
} else if (ends_with(file, ".obj") || ends_with(file, ".stl")) {
m_data_path = file;
m_testbed_mode = ETestbedMode::Sdf;
load_mesh();
} else if (ends_with(file, ".exr") || ends_with(file, ".bin")) {
m_data_path = file;
m_testbed_mode = ETestbedMode::Image;
try {
load_image();
} catch (std::runtime_error& e) {
tlog::error() << "Failed to open image: " << e.what();
return;
}
} else if (ends_with(file, ".nvdb")) {
m_data_path = file;
m_testbed_mode = ETestbedMode::Volume;
try {
load_volume();
} catch (std::runtime_error& e) {
tlog::error() << "Failed to open volume: " << e.what();
return;
}
} else {
tlog::error() << "Tried to open unknown file type: " << file;
}
}
void Testbed::reset_accumulation(bool due_to_camera_movement, bool immediate_redraw) {
if (immediate_redraw) {
redraw_next_frame();
}
if (!due_to_camera_movement || !reprojection_available()) {
m_windowless_render_surface.reset_accumulation();
for (auto& tex : m_render_surfaces) {
tex.reset_accumulation();
}
}
}
void Testbed::set_visualized_dim(int dim) {
m_visualized_dimension = dim;
reset_accumulation();
}
void Testbed::translate_camera(const Vector3f& rel) {
m_camera.col(3) += m_camera.block<3, 3>(0, 0) * rel * m_bounding_radius;
reset_accumulation(true);
}
void Testbed::set_nerf_camera_matrix(const Matrix<float, 3, 4>& cam) {
m_camera = m_nerf.training.dataset.nerf_matrix_to_ngp(cam);
}
Vector3f Testbed::look_at() const {
return view_pos() + view_dir() * m_scale;
}
void Testbed::set_look_at(const Vector3f& pos) {
m_camera.col(3) += pos - look_at();
}
void Testbed::set_scale(float scale) {
auto prev_look_at = look_at();
m_camera.col(3) = (view_pos() - prev_look_at) * (scale / m_scale) + prev_look_at;
m_scale = scale;
}
void Testbed::set_view_dir(const Vector3f& dir) {
auto old_look_at = look_at();
m_camera.col(0) = dir.cross(m_up_dir).normalized();
m_camera.col(1) = dir.cross(m_camera.col(0)).normalized();
m_camera.col(2) = dir.normalized();
set_look_at(old_look_at);
}
void Testbed::first_training_view() {
m_nerf.training.view = 0;
set_camera_to_training_view(m_nerf.training.view);
reset_accumulation();
}
void Testbed::last_training_view() {
m_nerf.training.view = m_nerf.training.dataset.n_images-1;
set_camera_to_training_view(m_nerf.training.view);
reset_accumulation();
}
void Testbed::previous_training_view() {
if (m_nerf.training.view != 0) {
m_nerf.training.view -= 1;
}
set_camera_to_training_view(m_nerf.training.view);
reset_accumulation();
}
void Testbed::next_training_view() {
if (m_nerf.training.view != m_nerf.training.dataset.n_images-1) {
m_nerf.training.view += 1;
}
set_camera_to_training_view(m_nerf.training.view);
reset_accumulation();
}
void Testbed::set_camera_to_training_view(int trainview) {
auto old_look_at = look_at();
m_camera = m_smoothed_camera = get_xform_given_rolling_shutter(m_nerf.training.transforms[trainview], m_nerf.training.dataset.metadata[trainview].rolling_shutter, Vector2f{0.5f, 0.5f}, 0.0f);
m_relative_focal_length = m_nerf.training.dataset.metadata[trainview].focal_length / (float)m_nerf.training.dataset.metadata[trainview].resolution[m_fov_axis];
m_scale = std::max((old_look_at - view_pos()).dot(view_dir()), 0.1f);
m_nerf.render_with_lens_distortion = true;
m_nerf.render_lens = m_nerf.training.dataset.metadata[trainview].lens;
m_screen_center = Vector2f::Constant(1.0f) - m_nerf.training.dataset.metadata[0].principal_point;
}
void Testbed::reset_camera() {
m_fov_axis = 1;
set_fov(50.625f);
m_zoom = 1.f;
m_screen_center = Vector2f::Constant(0.5f);
m_scale = m_testbed_mode == ETestbedMode::Image ? 1.0f : 1.5f;
m_camera <<
1.0f, 0.0f, 0.0f, 0.5f,
0.0f, -1.0f, 0.0f, 0.5f,
0.0f, 0.0f, -1.0f, 0.5f;
m_camera.col(3) -= m_scale * view_dir();
m_smoothed_camera = m_camera;
m_up_dir = {0.0f, 1.0f, 0.0f};
m_sun_dir = Vector3f::Ones().normalized();
reset_accumulation();
}
void Testbed::set_train(bool mtrain) {
if (m_train && !mtrain && m_max_level_rand_training) {
set_max_level(1.f);
}
m_train = mtrain;
}
std::string get_filename_in_data_path_with_suffix(fs::path data_path, fs::path network_config_path, const char* suffix) {
// use the network config name along with the data path to build a filename with the requested suffix & extension
std::string default_name = network_config_path.basename();
if (default_name == "") default_name = "base";
if (data_path.empty())
return default_name + std::string(suffix);
if (data_path.is_directory())
return (data_path / (default_name + std::string{suffix})).str();
else
return data_path.stem().str() + "_" + default_name + std::string(suffix);
}
void Testbed::compute_and_save_marching_cubes_mesh(const char* filename, Vector3i res3d , BoundingBox aabb, float thresh, bool unwrap_it) {
Matrix3f render_aabb_to_local = Matrix3f::Identity();
if (aabb.is_empty()) {
aabb = m_testbed_mode == ETestbedMode::Nerf ? m_render_aabb : m_aabb;
render_aabb_to_local = m_render_aabb_to_local;
}
marching_cubes(res3d, aabb, render_aabb_to_local, thresh);
save_mesh(m_mesh.verts, m_mesh.vert_normals, m_mesh.vert_colors, m_mesh.indices, filename, unwrap_it, m_nerf.training.dataset.scale, m_nerf.training.dataset.offset);
}
Eigen::Vector3i Testbed::compute_and_save_png_slices(const char* filename, int res, BoundingBox aabb, float thresh, float density_range, bool flip_y_and_z_axes) {
Matrix3f render_aabb_to_local = Matrix3f::Identity();
if (aabb.is_empty()) {
aabb = m_testbed_mode == ETestbedMode::Nerf ? m_render_aabb : m_aabb;
render_aabb_to_local = m_render_aabb_to_local;
}
if (thresh == std::numeric_limits<float>::max()) {
thresh = m_mesh.thresh;
}
float range = density_range;
if (m_testbed_mode == ETestbedMode::Sdf) {
auto res3d = get_marching_cubes_res(res, aabb);
aabb.inflate(range * aabb.diag().x()/res3d.x());
}
auto res3d = get_marching_cubes_res(res, aabb);
if (m_testbed_mode == ETestbedMode::Sdf)
range *= -aabb.diag().x()/res3d.x(); // rescale the range to be in output voxels. ie this scale factor is mapped back to the original world space distances.
// negated so that black = outside, white = inside
char fname[128];
snprintf(fname, sizeof(fname), ".density_slices_%dx%dx%d.png", res3d.x(), res3d.y(), res3d.z());
GPUMemory<float> density = (m_render_ground_truth && m_testbed_mode == ETestbedMode::Sdf) ? get_sdf_gt_on_grid(res3d, aabb, render_aabb_to_local) : get_density_on_grid(res3d, aabb, render_aabb_to_local);
save_density_grid_to_png(density, (std::string(filename) + fname).c_str(), res3d, thresh, flip_y_and_z_axes, range);
return res3d;
}
inline float linear_to_db(float x) {
return -10.f*logf(x)/logf(10.f);
}
template <typename T>
void Testbed::dump_parameters_as_images(const T* params, const std::string& filename_base) {
size_t non_layer_params_width = 2048;
size_t layer_params = 0;
for (auto size : m_network->layer_sizes()) {
layer_params += size.first * size.second;
}
size_t n_params = m_network->n_params();
size_t n_non_layer_params = n_params - layer_params;
std::vector<T> params_cpu_network_precision(layer_params + next_multiple(n_non_layer_params, non_layer_params_width));
std::vector<float> params_cpu(params_cpu_network_precision.size(), 0.0f);
CUDA_CHECK_THROW(cudaMemcpy(params_cpu_network_precision.data(), params, n_params * sizeof(T), cudaMemcpyDeviceToHost));
for (size_t i = 0; i < n_params; ++i) {
params_cpu[i] = (float)params_cpu_network_precision[i];
}
size_t offset = 0;
size_t layer_id = 0;
for (auto size : m_network->layer_sizes()) {
save_exr(params_cpu.data() + offset, size.second, size.first, 1, 1, fmt::format("{}-layer-{}.exr", filename_base, layer_id).c_str());
offset += size.first * size.second;
++layer_id;
}
if (n_non_layer_params > 0) {
std::string filename = fmt::format("{}-non-layer.exr", filename_base);
save_exr(params_cpu.data() + offset, non_layer_params_width, n_non_layer_params / non_layer_params_width, 1, 1, filename.c_str());
}
}
template void Testbed::dump_parameters_as_images<__half>(const __half*, const std::string&);
template void Testbed::dump_parameters_as_images<float>(const float*, const std::string&);
Eigen::Matrix<float, 3, 4> Testbed::crop_box(bool nerf_space) const {
Eigen::Vector3f cen = m_render_aabb_to_local.transpose() * m_render_aabb.center();
Eigen::Vector3f radius = m_render_aabb.diag() * 0.5f;
Eigen::Vector3f x = m_render_aabb_to_local.row(0) * radius.x();
Eigen::Vector3f y = m_render_aabb_to_local.row(1) * radius.y();
Eigen::Vector3f z = m_render_aabb_to_local.row(2) * radius.z();
Eigen::Matrix<float, 3, 4> rv;
rv.col(0) = x;
rv.col(1) = y;
rv.col(2) = z;
rv.col(3) = cen;
if (nerf_space) {
rv = m_nerf.training.dataset.ngp_matrix_to_nerf(rv, true);
}
return rv;
}
void Testbed::set_crop_box(Eigen::Matrix<float, 3, 4> m, bool nerf_space) {
if (nerf_space) {
m = m_nerf.training.dataset.nerf_matrix_to_ngp(m, true);
}
Eigen::Vector3f radius(m.col(0).norm(), m.col(1).norm(), m.col(2).norm());
Eigen::Vector3f cen(m.col(3));
m_render_aabb_to_local.row(0) = m.col(0) / radius.x();
m_render_aabb_to_local.row(1) = m.col(1) / radius.y();
m_render_aabb_to_local.row(2) = m.col(2) / radius.z();
cen = m_render_aabb_to_local * cen;
m_render_aabb.min = cen - radius;
m_render_aabb.max = cen + radius;
}
std::vector<Eigen::Vector3f> Testbed::crop_box_corners(bool nerf_space) const {
Eigen::Matrix<float, 3, 4> m = crop_box(nerf_space);
std::vector<Eigen::Vector3f> rv(8);
for (int i = 0; i < 8; ++i) {
rv[i] = m * Eigen::Vector4f((i & 1) ? 1.f : -1.f, (i & 2) ? 1.f : -1.f, (i & 4) ? 1.f : -1.f, 1.f);
/* debug print out corners to check math is all lined up */
if (0) {
tlog::info() << rv[i].x() << "," << rv[i].y() << "," << rv[i].z() << " [" << i << "]";
Eigen::Vector3f mn = m_render_aabb.min;
Eigen::Vector3f mx = m_render_aabb.max;
Eigen::Matrix3f m = m_render_aabb_to_local.transpose();
Eigen::Vector3f a;
a.x() = (i&1) ? mx.x() : mn.x();
a.y() = (i&2) ? mx.y() : mn.y();
a.z() = (i&4) ? mx.z() : mn.z();
a = m * a;
if (nerf_space) {
a = m_nerf.training.dataset.ngp_position_to_nerf(a);
}
tlog::info() << a.x() << "," << a.y() << "," << a.z() << " [" << i << "]";
}
}
return rv;
}
#ifdef NGP_GUI
bool imgui_colored_button(const char *name, float hue) {
ImGui::PushStyleColor(ImGuiCol_Button, (ImVec4)ImColor::HSV(hue, 0.6f, 0.6f));
ImGui::PushStyleColor(ImGuiCol_ButtonHovered, (ImVec4)ImColor::HSV(hue, 0.7f, 0.7f));
ImGui::PushStyleColor(ImGuiCol_ButtonActive, (ImVec4)ImColor::HSV(hue, 0.8f, 0.8f));
bool rv = ImGui::Button(name);
ImGui::PopStyleColor(3);
return rv;
}
void Testbed::imgui() {
m_picture_in_picture_res = 0;
if (int read = ImGui::Begin("Camera path", 0, ImGuiWindowFlags_NoScrollbar)) {
static char path_filename_buf[128] = "";
if (path_filename_buf[0] == '\0') {
snprintf(path_filename_buf, sizeof(path_filename_buf), "%s", get_filename_in_data_path_with_suffix(m_data_path, m_network_config_path, "_cam.json").c_str());
}
if (m_camera_path.imgui(path_filename_buf, m_render_ms.val(), m_camera, m_slice_plane_z, m_scale, fov(), m_aperture_size, m_bounding_radius, !m_nerf.training.dataset.xforms.empty() ? m_nerf.training.dataset.xforms[0].start : Matrix<float, 3, 4>::Identity(), m_nerf.glow_mode, m_nerf.glow_y_cutoff)) {
if (m_camera_path.m_update_cam_from_path) {
set_camera_from_time(m_camera_path.m_playtime);
if (read > 1) {
m_smoothed_camera = m_camera;
}
}
m_pip_render_surface->reset_accumulation();
reset_accumulation(true);
}
if (!m_camera_path.m_keyframes.empty()) {
float w = ImGui::GetContentRegionAvail().x;
m_picture_in_picture_res = (float)std::min((int(w)+31)&(~31),1920/4);
if (m_camera_path.m_update_cam_from_path) {
ImGui::Image((ImTextureID)(size_t)m_render_textures.front()->texture(), ImVec2(w,w*9.f/16.f));
} else {
ImGui::Image((ImTextureID)(size_t)m_pip_render_texture->texture(), ImVec2(w,w*9.f/16.f));
}
}
}
ImGui::End();
ImGui::Begin("instant-ngp v" NGP_VERSION);
size_t n_bytes = tcnn::total_n_bytes_allocated() + g_total_n_bytes_allocated + dlss_allocated_bytes();
ImGui::Text("Frame: %.2f ms (%.1f FPS); Mem: %s", m_frame_ms.ema_val(), 1000.0f / m_frame_ms.ema_val(), bytes_to_string(n_bytes).c_str());
bool accum_reset = false;
if (!m_training_data_available) { ImGui::BeginDisabled(); }
if (ImGui::CollapsingHeader("Training", m_training_data_available ? ImGuiTreeNodeFlags_DefaultOpen : 0)) {
if (imgui_colored_button(m_train ? "Stop training" : "Start training", 0.4)) {
set_train(!m_train);
}
ImGui::SameLine();
ImGui::Checkbox("Train encoding", &m_train_encoding);
ImGui::SameLine();
ImGui::Checkbox("Train network", &m_train_network);
ImGui::SameLine();
ImGui::Checkbox("Random levels", &m_max_level_rand_training);
if (m_testbed_mode == ETestbedMode::Nerf) {
ImGui::Checkbox("Train envmap", &m_nerf.training.train_envmap);
ImGui::SameLine();
ImGui::Checkbox("Train extrinsics", &m_nerf.training.optimize_extrinsics);
ImGui::SameLine();
ImGui::Checkbox("Train exposure", &m_nerf.training.optimize_exposure);
ImGui::SameLine();
ImGui::Checkbox("Train distortion", &m_nerf.training.optimize_distortion);
if (m_nerf.training.dataset.n_extra_learnable_dims) {
ImGui::Checkbox("Train latent codes", &m_nerf.training.optimize_extra_dims);
}
static char opt_extr_filename_buf[1024] = "./trajectory.json";
static bool export_extrinsics_in_quat_format = true;
if (imgui_colored_button("Export extrinsics", 0.4f)) {
m_nerf.training.export_camera_extrinsics(opt_extr_filename_buf, export_extrinsics_in_quat_format);
}
ImGui::SameLine();
ImGui::PushItemWidth(400.f);
ImGui::InputText("File##Extrinsics file path", opt_extr_filename_buf, sizeof(opt_extr_filename_buf));
ImGui::PopItemWidth();
ImGui::SameLine();
ImGui::Checkbox("Quaternion format", &export_extrinsics_in_quat_format);
}
if (imgui_colored_button("Reset training", 0.f)) {
reload_network_from_file("");
}
ImGui::SameLine();
ImGui::DragInt("Seed", (int*)&m_seed, 1.0f, 0, std::numeric_limits<int>::max());
ImGui::SliderInt("Batch size", (int*)&m_training_batch_size, 1 << 12, 1 << 22, "%d", ImGuiSliderFlags_Logarithmic);
m_training_batch_size = next_multiple(m_training_batch_size, batch_size_granularity);
if (m_train) {
std::vector<std::string> timings;
if (m_testbed_mode == ETestbedMode::Nerf) {
timings.emplace_back(fmt::format("Grid: {:.01f}ms", m_training_prep_ms.ema_val()));
} else {
timings.emplace_back(fmt::format("Datagen: {:.01f}ms", m_training_prep_ms.ema_val()));
}
timings.emplace_back(fmt::format("Training: {:.01f}ms", m_training_ms.ema_val()));
ImGui::Text("%s", join(timings, ", ").c_str());
} else {
ImGui::Text("Training paused");
}
if (m_testbed_mode == ETestbedMode::Nerf) {
ImGui::Text("Rays/batch: %d, Samples/ray: %.2f, Batch size: %d/%d", m_nerf.training.counters_rgb.rays_per_batch, (float)m_nerf.training.counters_rgb.measured_batch_size / (float)m_nerf.training.counters_rgb.rays_per_batch, m_nerf.training.counters_rgb.measured_batch_size, m_nerf.training.counters_rgb.measured_batch_size_before_compaction);
}
float elapsed_training = std::chrono::duration<float>(std::chrono::steady_clock::now() - m_training_start_time_point).count();
ImGui::Text("Steps: %d, Loss: %0.6f (%0.2f dB), Elapsed: %.1fs", m_training_step, m_loss_scalar.ema_val(), linear_to_db(m_loss_scalar.ema_val()), elapsed_training);
ImGui::PlotLines("loss graph", m_loss_graph.data(), std::min(m_loss_graph_samples, m_loss_graph.size()), (m_loss_graph_samples < m_loss_graph.size()) ? 0 : (m_loss_graph_samples % m_loss_graph.size()), 0, FLT_MAX, FLT_MAX, ImVec2(0, 50.f));
if (m_testbed_mode == ETestbedMode::Nerf && ImGui::TreeNode("NeRF training options")) {
ImGui::Checkbox("Random bg color", &m_nerf.training.random_bg_color);
ImGui::SameLine();
ImGui::Checkbox("Snap to pixel centers", &m_nerf.training.snap_to_pixel_centers);
ImGui::SliderFloat("Near distance", &m_nerf.training.near_distance, 0.0f, 1.0f);
accum_reset |= ImGui::Checkbox("Linear colors", &m_nerf.training.linear_colors);
ImGui::Combo("Loss", (int*)&m_nerf.training.loss_type, LossTypeStr);
ImGui::Combo("Depth Loss", (int*)&m_nerf.training.depth_loss_type, LossTypeStr);
ImGui::Combo("RGB activation", (int*)&m_nerf.rgb_activation, NerfActivationStr);
ImGui::Combo("Density activation", (int*)&m_nerf.density_activation, NerfActivationStr);
ImGui::SliderFloat("Cone angle", &m_nerf.cone_angle_constant, 0.0f, 1.0f/128.0f);
ImGui::SliderFloat("Depth supervision strength", &m_nerf.training.depth_supervision_lambda, 0.f, 1.f);
// Importance sampling options, but still related to training
ImGui::Checkbox("Sample focal plane ~error", &m_nerf.training.sample_focal_plane_proportional_to_error);
ImGui::SameLine();
ImGui::Checkbox("Sample focal plane ~sharpness", &m_nerf.training.include_sharpness_in_error);
ImGui::Checkbox("Sample image ~error", &m_nerf.training.sample_image_proportional_to_error);
ImGui::Text("%dx%d error res w/ %d steps between updates", m_nerf.training.error_map.resolution.x(), m_nerf.training.error_map.resolution.y(), m_nerf.training.n_steps_between_error_map_updates);
ImGui::Checkbox("Display error overlay", &m_nerf.training.render_error_overlay);
if (m_nerf.training.render_error_overlay) {
ImGui::SliderFloat("Error overlay brightness", &m_nerf.training.error_overlay_brightness, 0.f, 1.f);
}
ImGui::SliderFloat("Density grid decay", &m_nerf.training.density_grid_decay, 0.f, 1.f,"%.4f");
ImGui::SliderFloat("Extrinsic L2 reg.", &m_nerf.training.extrinsic_l2_reg, 1e-8f, 0.1f, "%.6f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
ImGui::SliderFloat("Intrinsic L2 reg.", &m_nerf.training.intrinsic_l2_reg, 1e-8f, 0.1f, "%.6f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
ImGui::SliderFloat("Exposure L2 reg.", &m_nerf.training.exposure_l2_reg, 1e-8f, 0.1f, "%.6f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
ImGui::TreePop();
}
if (m_testbed_mode == ETestbedMode::Sdf && ImGui::TreeNode("SDF training options")) {
accum_reset |= ImGui::Checkbox("Use octree for acceleration", &m_sdf.use_triangle_octree);
accum_reset |= ImGui::Combo("Mesh SDF mode", (int*)&m_sdf.mesh_sdf_mode, MeshSdfModeStr);
accum_reset |= ImGui::SliderFloat("Surface offset scale", &m_sdf.training.surface_offset_scale, 0.125f, 1024.0f, "%.4f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
if (ImGui::Checkbox("Calculate IoU", &m_sdf.calculate_iou_online)) {
m_sdf.iou_decay = 0;
}
ImGui::SameLine();
ImGui::Text("%0.6f", m_sdf.iou);
ImGui::TreePop();
}
if (m_testbed_mode == ETestbedMode::Image && ImGui::TreeNode("Image training options")) {
ImGui::Combo("Training coords", (int*)&m_image.random_mode, RandomModeStr);
ImGui::Checkbox("Snap to pixel centers", &m_image.training.snap_to_pixel_centers);
accum_reset |= ImGui::Checkbox("Linear colors", &m_image.training.linear_colors);
ImGui::TreePop();
}
if (m_testbed_mode == ETestbedMode::Volume && ImGui::CollapsingHeader("Volume training options")) {
accum_reset |= ImGui::SliderFloat("Albedo", &m_volume.albedo, 0.f, 1.f);
accum_reset |= ImGui::SliderFloat("Scattering", &m_volume.scattering, -2.f, 2.f);
accum_reset |= ImGui::SliderFloat("Distance scale", &m_volume.inv_distance_scale, 1.f, 100.f, "%.3g", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
ImGui::TreePop();
}
}
if (!m_training_data_available) { ImGui::EndDisabled(); }
if (ImGui::CollapsingHeader("Rendering", ImGuiTreeNodeFlags_DefaultOpen)) {
ImGui::Checkbox("Render", &m_render);
ImGui::SameLine();
const auto& render_tex = m_render_surfaces.front();
std::string spp_string = m_dlss ? std::string{""} : fmt::format("({} spp)", std::max(render_tex.spp(), 1u));
ImGui::Text(": %.01fms for %dx%d %s", m_render_ms.ema_val(), render_tex.in_resolution().x(), render_tex.in_resolution().y(), spp_string.c_str());
if (m_dlss_supported) {
if (!m_single_view) {
ImGui::BeginDisabled();
m_dlss = false;
}
if (ImGui::Checkbox("DLSS", &m_dlss)) {
accum_reset = true;
}
if (render_tex.dlss()) {
ImGui::SameLine();
ImGui::Text("(automatic quality setting: %s)", DlssQualityStrArray[(int)render_tex.dlss()->quality()]);
ImGui::SliderFloat("DLSS sharpening", &m_dlss_sharpening, 0.0f, 1.0f, "%.02f");
}
if (!m_single_view) {
ImGui::EndDisabled();
}
}
ImGui::Checkbox("Dynamic resolution", &m_dynamic_res);
if (ImGui::Checkbox("VSync", &m_vsync)) {
glfwSwapInterval(m_vsync ? 1 : 0);
}
ImGui::SliderFloat("Target FPS", &m_dynamic_res_target_fps, 2.0f, 144.0f, "%.01f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
ImGui::SliderInt("Max spp", &m_max_spp, 0, 1024, "%d", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
if (!m_dynamic_res) {
ImGui::SliderInt("Fixed resolution factor", &m_fixed_res_factor, 8, 64);
}
if (m_testbed_mode == ETestbedMode::Nerf && m_nerf.training.dataset.has_light_dirs) {
Vector3f light_dir = m_nerf.light_dir.normalized();
if (ImGui::TreeNodeEx("Light Dir (Polar)", ImGuiTreeNodeFlags_DefaultOpen)) {
float phi = atan2f(m_nerf.light_dir.x(), m_nerf.light_dir.z());
float theta = asinf(m_nerf.light_dir.y());
bool spin = ImGui::SliderFloat("Light Dir Theta", &theta, -PI() / 2.0f, PI() / 2.0f);
spin |= ImGui::SliderFloat("Light Dir Phi", &phi, -PI(), PI());
if (spin) {
float sin_phi, cos_phi;
sincosf(phi, &sin_phi, &cos_phi);
float cos_theta=cosf(theta);
m_nerf.light_dir = {sin_phi * cos_theta,sinf(theta),cos_phi * cos_theta};
accum_reset = true;
}
ImGui::TreePop();
}
if (ImGui::TreeNode("Light Dir (Cartesian)")) {
accum_reset |= ImGui::SliderFloat("Light Dir X", ((float*)(&m_nerf.light_dir)) + 0, -1.0f, 1.0f);
accum_reset |= ImGui::SliderFloat("Light Dir Y", ((float*)(&m_nerf.light_dir)) + 1, -1.0f, 1.0f);
accum_reset |= ImGui::SliderFloat("Light Dir Z", ((float*)(&m_nerf.light_dir)) + 2, -1.0f, 1.0f);
ImGui::TreePop();
}
}
if (m_testbed_mode == ETestbedMode::Nerf && m_nerf.training.dataset.n_extra_learnable_dims) {
accum_reset |= ImGui::SliderInt("training image latent code for inference", (int*)&m_nerf.extra_dim_idx_for_inference, 0, m_nerf.training.dataset.n_images-1);
}
accum_reset |= ImGui::Combo("Render mode", (int*)&m_render_mode, RenderModeStr);
if (m_testbed_mode == ETestbedMode::Nerf) {
accum_reset |= ImGui::Combo("Groundtruth Render mode", (int*)&m_ground_truth_render_mode, GroundTruthRenderModeStr);
accum_reset |= ImGui::SliderFloat("Groundtruth Alpha", &m_ground_truth_alpha, 0.0f, 1.0f, "%.02f", ImGuiSliderFlags_AlwaysClamp);
}
accum_reset |= ImGui::Combo("Color space", (int*)&m_color_space, ColorSpaceStr);
accum_reset |= ImGui::Combo("Tonemap curve", (int*)&m_tonemap_curve, TonemapCurveStr);
accum_reset |= ImGui::ColorEdit4("Background", &m_background_color[0]);
if (ImGui::SliderFloat("Exposure", &m_exposure, -5.f, 5.f)) {
set_exposure(m_exposure);
}
accum_reset |= ImGui::Checkbox("Snap to pixel centers", &m_snap_to_pixel_centers);
float max_diam = (m_aabb.max-m_aabb.min).maxCoeff();
float render_diam = (m_render_aabb.max-m_render_aabb.min).maxCoeff();
float old_render_diam = render_diam;
if (ImGui::SliderFloat("Crop size", &render_diam, 0.1f, max_diam, "%.3f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat)) {
accum_reset = true;
if (old_render_diam > 0.f && render_diam > 0.f) {
const Vector3f center = (m_render_aabb.max + m_render_aabb.min) * 0.5f;
float scale = render_diam / old_render_diam;
m_render_aabb.max = ((m_render_aabb.max-center) * scale + center).cwiseMin(m_aabb.max);
m_render_aabb.min = ((m_render_aabb.min-center) * scale + center).cwiseMax(m_aabb.min);
}
}
if (ImGui::TreeNode("Crop aabb")) {
m_edit_render_aabb = true;
accum_reset |= ImGui::SliderFloat("Min x", ((float*)&m_render_aabb.min)+0, m_aabb.min.x(), m_render_aabb.max.x(), "%.3f");
accum_reset |= ImGui::SliderFloat("Min y", ((float*)&m_render_aabb.min)+1, m_aabb.min.y(), m_render_aabb.max.y(), "%.3f");
accum_reset |= ImGui::SliderFloat("Min z", ((float*)&m_render_aabb.min)+2, m_aabb.min.z(), m_render_aabb.max.z(), "%.3f");
ImGui::Separator();
accum_reset |= ImGui::SliderFloat("Max x", ((float*)&m_render_aabb.max)+0, m_render_aabb.min.x(), m_aabb.max.x(), "%.3f");
accum_reset |= ImGui::SliderFloat("Max y", ((float*)&m_render_aabb.max)+1, m_render_aabb.min.y(), m_aabb.max.y(), "%.3f");
accum_reset |= ImGui::SliderFloat("Max z", ((float*)&m_render_aabb.max)+2, m_render_aabb.min.z(), m_aabb.max.z(), "%.3f");
ImGui::Separator();
Vector3f diag = m_render_aabb.diag();
bool edit_diag = false;
float max_diag = m_aabb.diag().maxCoeff();
edit_diag |= ImGui::SliderFloat("Size x", ((float*)&diag)+0, 0.001f, max_diag, "%.3f");
edit_diag |= ImGui::SliderFloat("Size y", ((float*)&diag)+1, 0.001f, max_diag, "%.3f");
edit_diag |= ImGui::SliderFloat("Size z", ((float*)&diag)+2, 0.001f, max_diag, "%.3f");
if (edit_diag) {
accum_reset = true;
Vector3f cen = m_render_aabb.center();
m_render_aabb = BoundingBox(cen - diag * 0.5f, cen + diag * 0.5f);
}
if (ImGui::Button("Reset")) {
accum_reset = true;
m_render_aabb = m_aabb;
m_render_aabb_to_local = Matrix3f::Identity();
}
ImGui::SameLine();
if (ImGui::Button("Reset Rotation Only")) {
accum_reset = true;
Eigen::Vector3f world_cen = m_render_aabb_to_local.transpose() * m_render_aabb.center();
m_render_aabb_to_local = Matrix3f::Identity();
Eigen::Vector3f new_cen = m_render_aabb_to_local * world_cen;
Eigen::Vector3f old_cen = m_render_aabb.center();
m_render_aabb.min += new_cen - old_cen;
m_render_aabb.max += new_cen - old_cen;
}
if (/*m_visualize_unit_cube*/ 1) {
if (ImGui::RadioButton("Translate", m_camera_path.m_gizmo_op == ImGuizmo::TRANSLATE))
m_camera_path.m_gizmo_op = ImGuizmo::TRANSLATE;
ImGui::SameLine();
if (ImGui::RadioButton("Rotate", m_camera_path.m_gizmo_op == ImGuizmo::ROTATE))
m_camera_path.m_gizmo_op = ImGuizmo::ROTATE;
}
ImGui::TreePop();
} else {
m_edit_render_aabb = false;
}
if (m_testbed_mode == ETestbedMode::Nerf && ImGui::TreeNode("NeRF rendering options")) {
accum_reset |= ImGui::Checkbox("Apply lens distortion", &m_nerf.render_with_lens_distortion);
if (m_nerf.render_with_lens_distortion) {
accum_reset |= ImGui::Combo("Lens mode", (int*)&m_nerf.render_lens.mode, "Perspective\0OpenCV\0F-Theta\0LatLong\0");
if (m_nerf.render_lens.mode == ELensMode::OpenCV) {
accum_reset |= ImGui::InputFloat("k1", &m_nerf.render_lens.params[0], 0.f, 0.f, "%.5f");
accum_reset |= ImGui::InputFloat("k2", &m_nerf.render_lens.params[1], 0.f, 0.f, "%.5f");
accum_reset |= ImGui::InputFloat("p1", &m_nerf.render_lens.params[2], 0.f, 0.f, "%.5f");
accum_reset |= ImGui::InputFloat("p2", &m_nerf.render_lens.params[3], 0.f, 0.f, "%.5f");
} else if (m_nerf.render_lens.mode == ELensMode::FTheta) {
accum_reset |= ImGui::InputFloat("width", &m_nerf.render_lens.params[5], 0.f, 0.f, "%.0f");
accum_reset |= ImGui::InputFloat("height", &m_nerf.render_lens.params[6], 0.f, 0.f, "%.0f");
accum_reset |= ImGui::InputFloat("f_theta p0", &m_nerf.render_lens.params[0], 0.f, 0.f, "%.5f");
accum_reset |= ImGui::InputFloat("f_theta p1", &m_nerf.render_lens.params[1], 0.f, 0.f, "%.5f");
accum_reset |= ImGui::InputFloat("f_theta p2", &m_nerf.render_lens.params[2], 0.f, 0.f, "%.5f");
accum_reset |= ImGui::InputFloat("f_theta p3", &m_nerf.render_lens.params[3], 0.f, 0.f, "%.5f");
accum_reset |= ImGui::InputFloat("f_theta p4", &m_nerf.render_lens.params[4], 0.f, 0.f, "%.5f");
}
}
accum_reset |= ImGui::SliderFloat("Min transmittance", &m_nerf.render_min_transmittance, 0.0f, 1.0f, "%.3f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
ImGui::TreePop();
}
if (m_testbed_mode == ETestbedMode::Sdf && ImGui::TreeNode("SDF rendering options")) {
accum_reset |= ImGui::Combo("Ground Truth Rendering Mode", (int*)&m_sdf.groundtruth_mode,
"Raytraced Mesh\0"
"Sphere Traced Mesh\0"
"SDF Bricks\0"
);
if (m_sdf.groundtruth_mode == ESDFGroundTruthMode::SDFBricks) {
accum_reset |= ImGui::SliderInt("Brick Octree Level", (int*)&m_sdf.brick_level, 1, 10);
accum_reset |= ImGui::Checkbox("Brick Normals track Octree Level", &m_sdf.brick_smooth_normals);
accum_reset |= ImGui::SliderInt("Brick Quantize Bits", (int*)&m_sdf.brick_quantise_bits, 0, 16);
}
accum_reset |= ImGui::Checkbox("Analytic normals", &m_sdf.analytic_normals);
accum_reset |= ImGui::SliderFloat("Normals epsilon", &m_sdf.fd_normals_epsilon, 0.00001f, 0.1f, "%.6g", ImGuiSliderFlags_Logarithmic);
accum_reset |= ImGui::SliderFloat("Maximum distance", &m_sdf.maximum_distance, 0.00001f, 0.1f, "%.6g", ImGuiSliderFlags_Logarithmic);
accum_reset |= ImGui::SliderFloat("Shadow sharpness", &m_sdf.shadow_sharpness, 0.1f, 2048.0f, "%.6g", ImGuiSliderFlags_Logarithmic);
accum_reset |= ImGui::SliderFloat("Inflate (offset the zero set)", &m_sdf.zero_offset, -0.25f, 0.25f);
accum_reset |= ImGui::SliderFloat("Distance scale", &m_sdf.distance_scale, 0.25f, 1.f);
ImGui::TreePop();
}
if (m_testbed_mode == ETestbedMode::Image && ImGui::TreeNode("Image rendering options")) {
static bool quantize_to_byte = false;
static float mse = 0.0f;
if (imgui_colored_button("Compute PSNR", 0.4)) {
mse = compute_image_mse(quantize_to_byte);
}
float psnr = -10.0f * std::log(mse) / std::log(10.0f);
ImGui::SameLine();
ImGui::Text("%0.6f", psnr);
ImGui::SameLine();
ImGui::Checkbox("Quantize", &quantize_to_byte);
ImGui::TreePop();
}
if (ImGui::TreeNode("Debug visualization")) {
ImGui::Checkbox("Visualize unit cube", &m_visualize_unit_cube);
if (m_testbed_mode == ETestbedMode::Nerf) {
ImGui::SameLine();
ImGui::Checkbox("Visualize cameras", &m_nerf.visualize_cameras);
accum_reset |= ImGui::SliderInt("Show acceleration", &m_nerf.show_accel, -1, 7);
}
if (!m_single_view) { ImGui::BeginDisabled(); }
if (ImGui::SliderInt("Visualized dimension", &m_visualized_dimension, -1, (int)network_width(m_visualized_layer)-1)) {
set_visualized_dim(m_visualized_dimension);
}
if (!m_single_view) { ImGui::EndDisabled(); }
if (ImGui::SliderInt("Visualized layer", &m_visualized_layer, 0, (int)network_num_forward_activations()-1)) {
set_visualized_layer(m_visualized_layer);
}
if (ImGui::Checkbox("Single view", &m_single_view)) {
set_visualized_dim(-1);
accum_reset = true;
}
if (m_testbed_mode == ETestbedMode::Nerf) {
if (ImGui::Button("First")) {
first_training_view();
}
ImGui::SameLine();
if (ImGui::Button("Previous")) {
previous_training_view();
}
ImGui::SameLine();
if (ImGui::Button("Next")) {
next_training_view();
}
ImGui::SameLine();
if (ImGui::Button("Last")) {
last_training_view();
}
ImGui::SameLine();
ImGui::Text("%s", m_nerf.training.dataset.paths.at(m_nerf.training.view).c_str());
if (ImGui::SliderInt("Training view", &m_nerf.training.view, 0, (int)m_nerf.training.dataset.n_images-1)) {
set_camera_to_training_view(m_nerf.training.view);
accum_reset = true;
}
ImGui::PlotLines("Training view error", m_nerf.training.error_map.pmf_img_cpu.data(), m_nerf.training.error_map.pmf_img_cpu.size(), 0, nullptr, 0.0f, FLT_MAX, ImVec2(0, 60.f));
if (m_nerf.training.optimize_exposure) {
std::vector<float> exposures(m_nerf.training.dataset.n_images);
for (uint32_t i = 0; i < m_nerf.training.dataset.n_images; ++i) {
exposures[i] = m_nerf.training.cam_exposure[i].variable().x();
}
ImGui::PlotLines("Training view exposures", exposures.data(), exposures.size(), 0, nullptr, FLT_MAX, FLT_MAX, ImVec2(0, 60.f));
}
if (ImGui::SliderInt("glow mode", &m_nerf.glow_mode, 0, 16)) {
accum_reset = true;
}
if (m_nerf.glow_mode && ImGui::SliderFloat("glow pos", &m_nerf.glow_y_cutoff, -2.f, 3.f)) {
accum_reset = true;
}
}
ImGui::TreePop();
}
}
if (ImGui::CollapsingHeader("Camera", ImGuiTreeNodeFlags_DefaultOpen)) {
if (ImGui::SliderFloat("Aperture size", &m_aperture_size, 0.0f, 0.1f)) {
m_dlss = false;
accum_reset = true;
}
float local_fov = fov();
if (ImGui::SliderFloat("Field of view", &local_fov, 0.0f, 120.0f)) {
set_fov(local_fov);
accum_reset = true;
}
accum_reset |= ImGui::SliderFloat("Zoom", &m_zoom, 1.f, 10.f);
if (m_testbed_mode == ETestbedMode::Sdf) {
accum_reset |= ImGui::Checkbox("Floor", &m_floor_enable);
ImGui::SameLine();
}
ImGui::Checkbox("First person controls", &m_fps_camera);
ImGui::SameLine();
ImGui::Checkbox("Smooth camera motion", &m_camera_smoothing);
ImGui::SameLine();
ImGui::Checkbox("Autofocus", &m_autofocus);
if (ImGui::TreeNode("Advanced camera settings")) {
accum_reset |= ImGui::SliderFloat2("Screen center", &m_screen_center.x(), 0.f, 1.f);
accum_reset |= ImGui::SliderFloat2("Parallax shift", &m_parallax_shift.x(), -1.f, 1.f);
accum_reset |= ImGui::SliderFloat("Slice / focus depth", &m_slice_plane_z, -m_bounding_radius, m_bounding_radius);
accum_reset |= ImGui::SliderFloat("Render near distance", &m_render_near_distance, 0.0f, 1.0f, "%.3f", ImGuiSliderFlags_Logarithmic | ImGuiSliderFlags_NoRoundToFormat);
char buf[2048];
Vector3f v = view_dir();
Vector3f p = look_at();
Vector3f s = m_sun_dir;
Vector3f u = m_up_dir;
Array4f b = m_background_color;
snprintf(buf, sizeof(buf),
"testbed.background_color = [%0.3f, %0.3f, %0.3f, %0.3f]\n"
"testbed.exposure = %0.3f\n"
"testbed.sun_dir = [%0.3f,%0.3f,%0.3f]\n"
"testbed.up_dir = [%0.3f,%0.3f,%0.3f]\n"
"testbed.view_dir = [%0.3f,%0.3f,%0.3f]\n"
"testbed.look_at = [%0.3f,%0.3f,%0.3f]\n"
"testbed.scale = %0.3f\n"
"testbed.fov,testbed.aperture_size,testbed.slice_plane_z = %0.3f,%0.3f,%0.3f\n"
"testbed.autofocus_target = [%0.3f,%0.3f,%0.3f]\n"
"testbed.autofocus = %s\n\n"
, b.x(), b.y(), b.z(), b.w()
, m_exposure
, s.x(), s.y(), s.z()
, u.x(), u.y(), u.z()
, v.x(), v.y(), v.z()
, p.x(), p.y(), p.z()
, scale()
, fov(), m_aperture_size, m_slice_plane_z
, m_autofocus_target.x(), m_autofocus_target.y(), m_autofocus_target.z()
, m_autofocus ? "True" : "False"
);
if (m_testbed_mode == ETestbedMode::Sdf) {
size_t n = strlen(buf);
snprintf(buf+n, sizeof(buf)-n,
"testbed.sdf.shadow_sharpness = %0.3f\n"
"testbed.sdf.analytic_normals = %s\n"
"testbed.sdf.use_triangle_octree = %s\n\n"
"testbed.sdf.brdf.metallic = %0.3f\n"
"testbed.sdf.brdf.subsurface = %0.3f\n"
"testbed.sdf.brdf.specular = %0.3f\n"
"testbed.sdf.brdf.roughness = %0.3f\n"
"testbed.sdf.brdf.sheen = %0.3f\n"
"testbed.sdf.brdf.clearcoat = %0.3f\n"
"testbed.sdf.brdf.clearcoat_gloss = %0.3f\n"
"testbed.sdf.brdf.basecolor = [%0.3f,%0.3f,%0.3f]\n\n"
, m_sdf.shadow_sharpness
, m_sdf.analytic_normals ? "True" : "False"
, m_sdf.use_triangle_octree ? "True" : "False"
, m_sdf.brdf.metallic
, m_sdf.brdf.subsurface
, m_sdf.brdf.specular
, m_sdf.brdf.roughness
, m_sdf.brdf.sheen
, m_sdf.brdf.clearcoat
, m_sdf.brdf.clearcoat_gloss
, m_sdf.brdf.basecolor.x()
, m_sdf.brdf.basecolor.y()
, m_sdf.brdf.basecolor.z()
);
}
ImGui::InputTextMultiline("Params", buf, sizeof(buf));
ImGui::TreePop();
}
}
if (ImGui::CollapsingHeader("Snapshot")) {
static char snapshot_filename_buf[128] = "";
if (snapshot_filename_buf[0] == '\0') {
snprintf(snapshot_filename_buf, sizeof(snapshot_filename_buf), "%s", get_filename_in_data_path_with_suffix(m_data_path, m_network_config_path, ".msgpack").c_str());
}
ImGui::Text("Snapshot");
ImGui::SameLine();
if (ImGui::Button("Save")) {
save_snapshot(snapshot_filename_buf, m_include_optimizer_state_in_snapshot);
}
ImGui::SameLine();
static std::string snapshot_load_error_string = "";
if (ImGui::Button("Load")) {
try {
load_snapshot(snapshot_filename_buf);
} catch (std::exception& e) {
ImGui::OpenPopup("Snapshot load error");
snapshot_load_error_string = std::string{"Failed to load snapshot: "} + e.what();
}
}
ImGui::SameLine();
if (ImGui::Button("Dump parameters as images")) {
dump_parameters_as_images(m_trainer->params(), "params");
}
if (ImGui::BeginPopupModal("Snapshot load error", NULL, ImGuiWindowFlags_AlwaysAutoResize)) {
ImGui::Text("%s", snapshot_load_error_string.c_str());
if (ImGui::Button("OK", ImVec2(120, 0))) {
ImGui::CloseCurrentPopup();
}
ImGui::EndPopup();
}
ImGui::SameLine();
ImGui::Checkbox("w/ Optimizer State", &m_include_optimizer_state_in_snapshot);
ImGui::InputText("File##Snapshot file path", snapshot_filename_buf, sizeof(snapshot_filename_buf));
}
if (m_testbed_mode == ETestbedMode::Nerf || m_testbed_mode == ETestbedMode::Sdf) {
if (ImGui::CollapsingHeader("Marching Cubes Mesh Output")) {
static bool flip_y_and_z_axes = false;
static float density_range = 4.f;
BoundingBox aabb = (m_testbed_mode == ETestbedMode::Nerf) ? m_render_aabb : m_aabb;
auto res3d = get_marching_cubes_res(m_mesh.res, aabb);
// If we use an octree to fit the SDF only close to the surface, then marching cubes will not work (SDF not defined everywhere)
bool disable_marching_cubes = m_testbed_mode == ETestbedMode::Sdf && (m_sdf.uses_takikawa_encoding || m_sdf.use_triangle_octree);
if (disable_marching_cubes) { ImGui::BeginDisabled(); }
if (imgui_colored_button("Mesh it!", 0.4f)) {
marching_cubes(res3d, aabb, m_render_aabb_to_local, m_mesh.thresh);
m_nerf.render_with_lens_distortion = false;
}
if (m_mesh.indices.size()>0) {
ImGui::SameLine();
if (imgui_colored_button("Clear Mesh", 0.f)) {
m_mesh.clear();
}
}
if (disable_marching_cubes) { ImGui::EndDisabled(); }
ImGui::SameLine();
if (imgui_colored_button("Save density PNG",-0.4f)) {
Testbed::compute_and_save_png_slices(m_data_path.str().c_str(), m_mesh.res, {}, m_mesh.thresh, density_range, flip_y_and_z_axes);
}
if (m_testbed_mode == ETestbedMode::Nerf) {
ImGui::SameLine();
if (imgui_colored_button("Save RGBA PNG sequence", 0.2f)) {
auto effective_view_dir = flip_y_and_z_axes ? Vector3f{0.0f, 1.0f, 0.0f} : Vector3f{0.0f, 0.0f, 1.0f};
// Depth of 0.01f is arbitrarily chosen to produce a visually interpretable range of alpha values.
// Alternatively, if the true transparency of a given voxel is desired, one could use the voxel size,
// the voxel diagonal, or some form of expected ray length through the voxel, given random directions.
GPUMemory<Array4f> rgba = get_rgba_on_grid(res3d, effective_view_dir, true, 0.01f);
auto dir = m_data_path / "rgba_slices";
if (!dir.exists()) {
fs::create_directory(dir);
}
save_rgba_grid_to_png_sequence(rgba, dir.str().c_str(), res3d, flip_y_and_z_axes);
}
if (imgui_colored_button("Save raw volumes", 0.4f)) {
auto effective_view_dir = flip_y_and_z_axes ? Vector3f{0.0f, 1.0f, 0.0f} : Vector3f{0.0f, 0.0f, 1.0f};
auto old_local = m_render_aabb_to_local;
auto old_aabb = m_render_aabb;
m_render_aabb_to_local = Eigen::Matrix3f::Identity();
auto dir = m_data_path / "volume_raw";
if (!dir.exists()) {
fs::create_directory(dir);
}
for (int cascade = 0; (1<<cascade)<= m_aabb.diag().x()+0.5f; ++cascade) {
float radius = (1<<cascade) * 0.5f;
m_render_aabb = BoundingBox(Eigen::Vector3f::Constant(0.5f-radius), Eigen::Vector3f::Constant(0.5f+radius));
// Dump raw density values that the user can then convert to alpha as they please.
GPUMemory<Array4f> rgba = get_rgba_on_grid(res3d, effective_view_dir, true, 0.0f, true);
save_rgba_grid_to_raw_file(rgba, dir.str().c_str(), res3d, flip_y_and_z_axes, cascade);
}
m_render_aabb_to_local = old_local;
m_render_aabb = old_aabb;
}
}
ImGui::SameLine();
ImGui::Checkbox("Swap Y&Z", &flip_y_and_z_axes);
ImGui::SliderFloat("PNG Density Range", &density_range, 0.001f, 8.f);
static char obj_filename_buf[128] = "";
ImGui::SliderInt("Res:", &m_mesh.res, 16, 2048, "%d", ImGuiSliderFlags_Logarithmic);
ImGui::SameLine();
ImGui::Text("%dx%dx%d", res3d.x(), res3d.y(), res3d.z());
if (obj_filename_buf[0] == '\0') {
snprintf(obj_filename_buf, sizeof(obj_filename_buf), "%s", get_filename_in_data_path_with_suffix(m_data_path, m_network_config_path, ".obj").c_str());
}
float thresh_range = (m_testbed_mode == ETestbedMode::Sdf) ? 0.5f : 10.f;
ImGui::SliderFloat("MC density threshold",&m_mesh.thresh, -thresh_range, thresh_range);
ImGui::Combo("Mesh render mode", (int*)&m_mesh_render_mode, "Off\0Vertex Colors\0Vertex Normals\0Face IDs\0");
ImGui::Checkbox("Unwrap mesh", &m_mesh.unwrap);
if (uint32_t tricount = m_mesh.indices.size()/3) {
ImGui::InputText("##OBJFile", obj_filename_buf, sizeof(obj_filename_buf));
if (ImGui::Button("Save it!")) {
save_mesh(m_mesh.verts, m_mesh.vert_normals, m_mesh.vert_colors, m_mesh.indices, obj_filename_buf, m_mesh.unwrap, m_nerf.training.dataset.scale, m_nerf.training.dataset.offset);
}
ImGui::SameLine();
ImGui::Text("Mesh has %d triangles\n", tricount);
ImGui::Checkbox("Optimize mesh", &m_mesh.optimize_mesh);
ImGui::SliderFloat("Laplacian smoothing", &m_mesh.smooth_amount, 0.f, 2048.f);
ImGui::SliderFloat("Density push", &m_mesh.density_amount, 0.f, 128.f);
ImGui::SliderFloat("Inflate", &m_mesh.inflate_amount, 0.f, 128.f);
}
}
}
if (m_testbed_mode == ETestbedMode::Sdf) {
if (ImGui::CollapsingHeader("BRDF parameters")) {
accum_reset |= ImGui::ColorEdit3("Base color", (float*)&m_sdf.brdf.basecolor );
accum_reset |= ImGui::SliderFloat("Roughness", &m_sdf.brdf.roughness, 0.f, 1.f);
accum_reset |= ImGui::SliderFloat("Specular", &m_sdf.brdf.specular, 0.f, 1.f);
accum_reset |= ImGui::SliderFloat("Metallic", &m_sdf.brdf.metallic, 0.f, 1.f);
ImGui::Separator();
accum_reset |= ImGui::SliderFloat("Subsurface", &m_sdf.brdf.subsurface, 0.f, 1.f);
accum_reset |= ImGui::SliderFloat("Sheen", &m_sdf.brdf.sheen, 0.f, 1.f);
accum_reset |= ImGui::SliderFloat("Clearcoat", &m_sdf.brdf.clearcoat, 0.f, 1.f);
accum_reset |= ImGui::SliderFloat("Clearcoat gloss", &m_sdf.brdf.clearcoat_gloss, 0.f, 1.f);
}
m_sdf.brdf.ambientcolor = (m_background_color * m_background_color).head<3>();
}
if (ImGui::CollapsingHeader("Histograms of trainable encoding parameters")) {
ImGui::Checkbox("Gather histograms", &m_gather_histograms);
static float minlevel = 0.f;
static float maxlevel = 1.f;
if (ImGui::SliderFloat("Max level", &maxlevel, 0.f, 1.f))
set_max_level(maxlevel);
if (ImGui::SliderFloat("##Min level", &minlevel, 0.f, 1.f))
set_min_level(minlevel);
ImGui::SameLine();
ImGui::Text("%0.1f%% values snapped to 0", m_quant_percent);
std::vector<float> f(m_num_levels);
// Hashgrid statistics
for (int i = 0; i < m_num_levels; ++i) {
f[i] = m_level_stats[i].mean();
}
ImGui::PlotHistogram("Grid means", f.data(), m_num_levels, 0, "means", FLT_MAX, FLT_MAX, ImVec2(0, 60.f));
for (int i = 0; i < m_num_levels; ++i) {
f[i] = m_level_stats[i].sigma();
}
ImGui::PlotHistogram("Grid sigmas", f.data(), m_num_levels, 0, "sigma", FLT_MAX, FLT_MAX, ImVec2(0, 60.f));
ImGui::Separator();
// Histogram of trained hashgrid params
ImGui::SliderInt("Show details for level", &m_histo_level, 0, m_num_levels - 1);
if (m_histo_level < m_num_levels) {
LevelStats& s = m_level_stats[m_histo_level];
static bool excludezero = false;
if (excludezero)
m_histo[128] = 0.f;
ImGui::PlotHistogram("Values histogram", m_histo, 257, 0, "", FLT_MAX, FLT_MAX, ImVec2(0, 120.f));
ImGui::SliderFloat("Histogram horizontal scale", &m_histo_scale, 0.01f, 2.f);
ImGui::Checkbox("Exclude 'zero' from histogram", &excludezero);
ImGui::Text("Range: %0.5f - %0.5f", s.min, s.max);
ImGui::Text("Mean: %0.5f Sigma: %0.5f", s.mean(), s.sigma());
ImGui::Text("Num Zero: %d (%0.1f%%)", s.numzero, s.fraczero() * 100.f);
}
}
if (accum_reset) {
reset_accumulation();
}
if (ImGui::Button("Go to python REPL")) {
m_want_repl = true;
}
ImGui::End();
}
void Testbed::visualize_nerf_cameras(ImDrawList* list, const Matrix<float, 4, 4>& world2proj) {
for (int i = 0; i < m_nerf.training.n_images_for_training; ++i) {
auto res = m_nerf.training.dataset.metadata[i].resolution;
float aspect = float(res.x())/float(res.y());
auto current_xform = get_xform_given_rolling_shutter(m_nerf.training.transforms[i], m_nerf.training.dataset.metadata[i].rolling_shutter, Vector2f{0.5f, 0.5f}, 0.0f);
visualize_nerf_camera(list, world2proj, m_nerf.training.dataset.xforms[i].start, aspect, 0x40ffff40);
visualize_nerf_camera(list, world2proj, m_nerf.training.dataset.xforms[i].end, aspect, 0x40ffff40);
visualize_nerf_camera(list, world2proj, current_xform, aspect, 0x80ffffff);
// Visualize near distance
add_debug_line(list, world2proj, current_xform.col(3), current_xform.col(3) + current_xform.col(2) * m_nerf.training.near_distance, 0x20ffffff);
}
}
void Testbed::draw_visualizations(ImDrawList* list, const Matrix<float, 3, 4>& camera_matrix) {
// Visualize 3D cameras for SDF or NeRF use cases
if (m_testbed_mode != ETestbedMode::Image) {
Matrix<float, 4, 4> world2view, view2world, view2proj, world2proj;
view2world.setIdentity();
view2world.block<3,4>(0,0) = camera_matrix;
auto focal = calc_focal_length(Vector2i::Ones(), m_fov_axis, m_zoom);
float zscale = 1.0f / focal[m_fov_axis];
float xyscale = (float)m_window_res[m_fov_axis];
Vector2f screen_center = render_screen_center();
view2proj <<
xyscale, 0, (float)m_window_res.x()*screen_center.x()*zscale, 0,
0, xyscale, (float)m_window_res.y()*screen_center.y()*zscale, 0,
0, 0, 1, 0,
0, 0, zscale, 0;
world2view = view2world.inverse();
world2proj = view2proj * world2view;
float aspect = (float)m_window_res.x() / (float)m_window_res.y();
// Visualize NeRF training poses
if (m_testbed_mode == ETestbedMode::Nerf) {
if (m_nerf.visualize_cameras) {
visualize_nerf_cameras(list, world2proj);
}
}
if (m_visualize_unit_cube) {
visualize_unit_cube(list, world2proj, Eigen::Vector3f::Constant(0.f), Eigen::Vector3f::Constant(1.f), Eigen::Matrix3f::Identity());
}
if (m_edit_render_aabb) {
if (m_testbed_mode == ETestbedMode::Nerf) {
visualize_unit_cube(list, world2proj, m_render_aabb.min, m_render_aabb.max, m_render_aabb_to_local);
ImGuiIO& io = ImGui::GetIO();
float flx = focal.x();
float fly = focal.y();
Matrix<float, 4, 4> view2proj_guizmo;
float zfar = 100.f;
float znear = 0.1f;
view2proj_guizmo <<
fly*2.f/aspect, 0, 0, 0,
0, -fly*2.f, 0, 0,
0, 0, (zfar+znear)/(zfar-znear), -(2.f*zfar*znear) / (zfar-znear),
0, 0, 1, 0;
ImGuizmo::SetRect(0, 0, io.DisplaySize.x, io.DisplaySize.y);
Eigen::Matrix4f matrix=Eigen::Matrix4f::Identity();
matrix.block<3,3>(0,0) = m_render_aabb_to_local.transpose();
Eigen::Vector3f cen = m_render_aabb_to_local.transpose() * m_render_aabb.center();
matrix.block<3,4>(0,0).col(3) = cen;
if (ImGuizmo::Manipulate((const float*)&world2view, (const float*)&view2proj_guizmo, m_camera_path.m_gizmo_op, ImGuizmo::LOCAL, (float*)&matrix, NULL, NULL)) {
m_render_aabb_to_local = matrix.block<3,3>(0,0).transpose();
Eigen::Vector3f new_cen = m_render_aabb_to_local * matrix.block<3,4>(0,0).col(3);
Eigen::Vector3f old_cen = m_render_aabb.center();
m_render_aabb.min += new_cen - old_cen;
m_render_aabb.max += new_cen - old_cen;
reset_accumulation();
}
}
}
if (m_camera_path.imgui_viz(list, view2proj, world2proj, world2view, focal, aspect)) {
m_pip_render_surface->reset_accumulation();
}
}
}
void glfw_error_callback(int error, const char* description) {
tlog::error() << "GLFW error #" << error << ": " << description;
}
bool Testbed::keyboard_event() {
if (ImGui::GetIO().WantCaptureKeyboard) {
return false;
}
if (m_keyboard_event_callback && m_keyboard_event_callback()) {
return false;
}
for (int idx = 0; idx < std::min((int)ERenderMode::NumRenderModes, 10); ++idx) {
char c[] = { "1234567890" };
if (ImGui::IsKeyPressed(c[idx])) {
m_render_mode = (ERenderMode)idx;
reset_accumulation();
}
}
bool shift = ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Shift;
if (ImGui::IsKeyPressed('Z')) {
m_camera_path.m_gizmo_op = ImGuizmo::TRANSLATE;
}
if (ImGui::IsKeyPressed('X')) {
m_camera_path.m_gizmo_op = ImGuizmo::ROTATE;
}
if (ImGui::IsKeyPressed('E')) {
set_exposure(m_exposure + (shift ? -0.5f : 0.5f));
redraw_next_frame();
}
if (ImGui::IsKeyPressed('R')) {
if (shift) {
reset_camera();
} else {
reload_network_from_file("");
}
}
if (ImGui::IsKeyPressed('O')) {
m_nerf.training.render_error_overlay = !m_nerf.training.render_error_overlay;
}
if (ImGui::IsKeyPressed('G')) {
m_render_ground_truth = !m_render_ground_truth;
reset_accumulation();
if (m_render_ground_truth) {
m_nerf.training.view = find_best_training_view(m_nerf.training.view);
}
}
if (ImGui::IsKeyPressed('.')) {
if (m_single_view) {
if (m_visualized_dimension == m_network->width(m_visualized_layer)-1 && m_visualized_layer < m_network->num_forward_activations()-1) {
set_visualized_layer(std::max(0, std::min((int)m_network->num_forward_activations()-1, m_visualized_layer+1)));
set_visualized_dim(0);
} else {
set_visualized_dim(std::max(-1, std::min((int)m_network->width(m_visualized_layer)-1, m_visualized_dimension+1)));
}
} else {
set_visualized_layer(std::max(0, std::min((int)m_network->num_forward_activations()-1, m_visualized_layer+1)));
}
}
if (ImGui::IsKeyPressed(',')) {
if (m_single_view) {
if (m_visualized_dimension == 0 && m_visualized_layer > 0) {
set_visualized_layer(std::max(0, std::min((int)m_network->num_forward_activations()-1, m_visualized_layer-1)));
set_visualized_dim(m_network->width(m_visualized_layer)-1);
} else {
set_visualized_dim(std::max(-1, std::min((int)m_network->width(m_visualized_layer)-1, m_visualized_dimension-1)));
}
} else {
set_visualized_layer(std::max(0, std::min((int)m_network->num_forward_activations()-1, m_visualized_layer-1)));
}
}
if (ImGui::IsKeyPressed('M')) {
m_single_view = !m_single_view;
set_visualized_dim(-1);
reset_accumulation();
}
if (ImGui::IsKeyPressed('T')) {
set_train(!m_train);
}
if (ImGui::IsKeyPressed('N')) {
m_sdf.analytic_normals = !m_sdf.analytic_normals;
reset_accumulation();
}
if (ImGui::IsKeyPressed('[')) {
if (shift) {
first_training_view();
} else {
previous_training_view();
}
}
if (ImGui::IsKeyPressed(']')) {
if (shift) {
last_training_view();
} else {
next_training_view();
}
}
if (ImGui::IsKeyPressed('=') || ImGui::IsKeyPressed('+')) {
m_camera_velocity *= 1.5f;
}
if (ImGui::IsKeyPressed('-') || ImGui::IsKeyPressed('_')) {
m_camera_velocity /= 1.5f;
}
// WASD camera movement
Vector3f translate_vec = Vector3f::Zero();
if (ImGui::IsKeyDown('W')) {
translate_vec.z() += 1.0f;
}
if (ImGui::IsKeyDown('A')) {
translate_vec.x() += -1.0f;
}
if (ImGui::IsKeyDown('S')) {
translate_vec.z() += -1.0f;
}
if (ImGui::IsKeyDown('D')) {
translate_vec.x() += 1.0f;
}
if (ImGui::IsKeyDown(' ')) {
translate_vec.y() += -1.0f;
}
if (ImGui::IsKeyDown('C')) {
translate_vec.y() += 1.0f;
}
translate_vec *= m_camera_velocity * m_frame_ms.val() / 1000.0f;
if (shift) {
translate_vec *= 5;
}
if (translate_vec != Vector3f::Zero()) {
m_fps_camera = true;
translate_camera(translate_vec);
}
return false;
}
void Testbed::mouse_wheel(Vector2f m, float delta) {
if (delta == 0) {
return;
}
if (!ImGui::GetIO().WantCaptureMouse) {
float scale_factor = pow(1.1f, -delta);
m_image.pos = (m_image.pos - m) / scale_factor + m;
set_scale(m_scale * scale_factor);
}
reset_accumulation(true);
}
void Testbed::mouse_drag(const Vector2f& rel, int button) {
Vector3f up = m_up_dir;
Vector3f side = m_camera.col(0);
bool is_left_held = (button & 1) != 0;
bool is_right_held = (button & 2) != 0;
bool shift = ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Shift;
if (is_left_held) {
if (shift) {
auto mouse = ImGui::GetMousePos();
determine_autofocus_target_from_pixel({mouse.x, mouse.y});
reset_accumulation();
} else {
float rot_sensitivity = m_fps_camera ? 0.35f : 1.0f;
Matrix3f rot =
(AngleAxisf(static_cast<float>(-rel.x() * 2 * PI() * rot_sensitivity), up) * // Scroll sideways around up vector
AngleAxisf(static_cast<float>(-rel.y() * 2 * PI() * rot_sensitivity), side)).matrix(); // Scroll around side vector
m_image.pos += rel;
if (m_fps_camera) {
m_camera.block<3, 3>(0, 0) = rot * m_camera.block<3, 3>(0, 0);
} else {
// Turntable
auto old_look_at = look_at();
set_look_at({0.0f, 0.0f, 0.0f});
m_camera = rot * m_camera;
set_look_at(old_look_at);
}
reset_accumulation(true);
}
}
if (is_right_held) {
Matrix3f rot =
(AngleAxisf(static_cast<float>(-rel.x() * 2 * PI()), up) * // Scroll sideways around up vector
AngleAxisf(static_cast<float>(-rel.y() * 2 * PI()), side)).matrix(); // Scroll around side vector
if (m_render_mode == ERenderMode::Shade) {
m_sun_dir = rot.transpose() * m_sun_dir;
}
m_slice_plane_z += -rel.y() * m_bounding_radius;
reset_accumulation();
}
bool is_middle_held = (button & 4) != 0;
if (is_middle_held) {
translate_camera({-rel.x(), -rel.y(), 0.0f});
}
}
bool Testbed::begin_frame_and_handle_user_input() {
if (glfwWindowShouldClose(m_glfw_window) || ImGui::IsKeyDown(GLFW_KEY_ESCAPE) || ImGui::IsKeyDown(GLFW_KEY_Q)) {
destroy_window();
return false;
}
{
auto now = std::chrono::steady_clock::now();
auto elapsed = now - m_last_frame_time_point;
m_last_frame_time_point = now;
m_frame_ms.update(std::chrono::duration<float, std::milli>(elapsed).count());
}
glfwPollEvents();
glfwGetFramebufferSize(m_glfw_window, &m_window_res.x(), &m_window_res.y());
ImGui_ImplOpenGL3_NewFrame();
ImGui_ImplGlfw_NewFrame();
ImGui::NewFrame();
ImGuizmo::BeginFrame();
if (ImGui::IsKeyPressed(GLFW_KEY_TAB) || ImGui::IsKeyPressed(GLFW_KEY_GRAVE_ACCENT)) {
m_imgui_enabled = !m_imgui_enabled;
}
ImVec2 m = ImGui::GetMousePos();
int mb = 0;
float mw = 0.f;
ImVec2 relm = {};
if (!ImGui::IsAnyItemActive() && !ImGuizmo::IsUsing() && !ImGuizmo::IsOver()) {
relm = ImGui::GetIO().MouseDelta;
if (ImGui::GetIO().MouseDown[0]) mb |= 1;
if (ImGui::GetIO().MouseDown[1]) mb |= 2;
if (ImGui::GetIO().MouseDown[2]) mb |= 4;
mw = ImGui::GetIO().MouseWheel;
relm = {relm.x / (float)m_window_res.y(), relm.y / (float)m_window_res.y()};
}
if (m_testbed_mode == ETestbedMode::Nerf && (m_render_ground_truth || m_nerf.training.render_error_overlay)) {
// find nearest training view to current camera, and set it
int bestimage = find_best_training_view(-1);
if (bestimage >= 0) {
m_nerf.training.view = bestimage;
if (mb == 0) {// snap camera to ground truth view on mouse up
set_camera_to_training_view(m_nerf.training.view);
}
}
}
keyboard_event();
mouse_wheel({m.x / (float)m_window_res.y(), m.y / (float)m_window_res.y()}, mw);
mouse_drag({relm.x, relm.y}, mb);
if (m_imgui_enabled) {
imgui();
}
return true;
}
void Testbed::SecondWindow::draw(GLuint texture) {
if (!window)
return;
int display_w, display_h;
GLFWwindow *old_context = glfwGetCurrentContext();
glfwMakeContextCurrent(window);
glfwGetFramebufferSize(window, &display_w, &display_h);
glViewport(0, 0, display_w, display_h);
glClearColor(0.f,0.f,0.f, 1.f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindVertexArray(vao);
if (program)
glUseProgram(program);
glDrawArrays(GL_TRIANGLES, 0, 6);
glBindVertexArray(0);
glUseProgram(0);
glfwSwapBuffers(window);
glfwMakeContextCurrent(old_context);
}
void Testbed::draw_gui() {
// Make sure all the cuda code finished its business here
CUDA_CHECK_THROW(cudaDeviceSynchronize());
if (!m_render_textures.empty())
m_second_window.draw((GLuint)m_render_textures.front()->texture());
glfwMakeContextCurrent(m_glfw_window);
int display_w, display_h;
glfwGetFramebufferSize(m_glfw_window, &display_w, &display_h);
glViewport(0, 0, display_w, display_h);
glClearColor(0.f, 0.f, 0.f, 0.f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
ImDrawList* list = ImGui::GetBackgroundDrawList();
list->AddCallback([](const ImDrawList*, const ImDrawCmd*) {
glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}, nullptr);
if (m_single_view) {
list->AddImageQuad((ImTextureID)(size_t)m_render_textures.front()->texture(), ImVec2{0.f, 0.f}, ImVec2{(float)display_w, 0.f}, ImVec2{(float)display_w, (float)display_h}, ImVec2{0.f, (float)display_h}, ImVec2(0, 0), ImVec2(1, 0), ImVec2(1, 1), ImVec2(0, 1));
} else {
m_dlss = false;
int i = 0;
for (int y = 0; y < m_n_views.y(); ++y) {
for (int x = 0; x < m_n_views.x(); ++x) {
if (i >= m_render_surfaces.size()) {
break;
}
Vector2f top_left{x * m_view_size.x(), y * m_view_size.y()};
list->AddImageQuad(
(ImTextureID)(size_t)m_render_textures[i]->texture(),
ImVec2{top_left.x(), top_left.y() },
ImVec2{top_left.x() + (float)m_view_size.x(), top_left.y() },
ImVec2{top_left.x() + (float)m_view_size.x(), top_left.y() + (float)m_view_size.y()},
ImVec2{top_left.x(), top_left.y() + (float)m_view_size.y()},
ImVec2(0, 0),
ImVec2(1, 0),
ImVec2(1, 1),
ImVec2(0, 1)
);
++i;
}
}
}
list->AddCallback(ImDrawCallback_ResetRenderState, nullptr);
auto draw_mesh = [&]() {
glClear(GL_DEPTH_BUFFER_BIT);
Vector2i res(display_w, display_h);
Vector2f focal_length = calc_focal_length(res, m_fov_axis, m_zoom);
Vector2f screen_center = render_screen_center();
draw_mesh_gl(m_mesh.verts, m_mesh.vert_normals, m_mesh.vert_colors, m_mesh.indices, res, focal_length, m_smoothed_camera, screen_center, (int)m_mesh_render_mode);
};
// Visualizations are only meaningful when rendering a single view
if (m_single_view) {
if (m_mesh.verts.size() != 0 && m_mesh.indices.size() != 0 && m_mesh_render_mode != EMeshRenderMode::Off) {
list->AddCallback([](const ImDrawList*, const ImDrawCmd* cmd) {
(*(decltype(draw_mesh)*)cmd->UserCallbackData)();
}, &draw_mesh);
list->AddCallback(ImDrawCallback_ResetRenderState, nullptr);
}
draw_visualizations(list, m_smoothed_camera);
}
if (m_render_ground_truth) {
list->AddText(ImVec2(4.f, 4.f), 0xffffffff, "Ground Truth");
}
ImGui::Render();
ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData());
glfwSwapBuffers(m_glfw_window);
// Make sure all the OGL code finished its business here.
// Any code outside of this function needs to be able to freely write to
// textures without being worried about interfering with rendering.
glFinish();
}
#endif //NGP_GUI
void Testbed::train_and_render(bool skip_rendering) {
if (m_train) {
train(m_training_batch_size);
}
if (m_mesh.optimize_mesh) {
optimise_mesh_step(1);
}
apply_camera_smoothing(m_frame_ms.val());
if (!m_render_window || !m_render || skip_rendering) {
return;
}
auto start = std::chrono::steady_clock::now();
ScopeGuard timing_guard{[&]() {
m_render_ms.update(std::chrono::duration<float, std::milli>(std::chrono::steady_clock::now()-start).count());
}};
if ((m_smoothed_camera - m_camera).norm() < 0.001f) {
m_smoothed_camera = m_camera;
} else {
reset_accumulation(true);
}
if (m_autofocus) {
autofocus();
}
if (m_single_view) {
// Should have been created when the window was created.
assert(!m_render_surfaces.empty());
auto& render_buffer = m_render_surfaces.front();
{
// Don't count the time being spent allocating buffers and resetting DLSS as part of the frame time.
// Otherwise the dynamic resolution calculations for following frames will be thrown out of whack
// and may even start oscillating.
auto skip_start = std::chrono::steady_clock::now();
ScopeGuard skip_timing_guard{[&]() {
start += std::chrono::steady_clock::now() - skip_start;
}};
if (m_dlss) {
render_buffer.enable_dlss(m_window_res);
m_aperture_size = 0.0f;
} else {
render_buffer.disable_dlss();
}
auto render_res = render_buffer.in_resolution();
if (render_res.isZero() || (m_train && m_training_step == 0)) {
render_res = m_window_res/16;
} else {
render_res = render_res.cwiseMin(m_window_res);
}
float render_time_per_fullres_frame = m_render_ms.val() / (float)render_res.x() / (float)render_res.y() * (float)m_window_res.x() * (float)m_window_res.y();
// Make sure we don't starve training with slow rendering
float factor = std::sqrt(1000.0f / m_dynamic_res_target_fps / render_time_per_fullres_frame);
if (!m_dynamic_res) {
factor = 8.f/(float)m_fixed_res_factor;
}
factor = tcnn::clamp(factor, 1.0f/16.0f, 1.0f);
if (factor > m_last_render_res_factor * 1.2f || factor < m_last_render_res_factor * 0.8f || factor == 1.0f || !m_dynamic_res) {
render_res = (m_window_res.cast<float>() * factor).cast<int>().cwiseMin(m_window_res).cwiseMax(m_window_res/16);
m_last_render_res_factor = factor;
}
if (render_buffer.dlss()) {
render_res = render_buffer.dlss()->clamp_resolution(render_res);
render_buffer.dlss()->update_feature(render_res, render_buffer.dlss()->is_hdr(), render_buffer.dlss()->sharpen());
}
render_buffer.resize(render_res);
}
render_frame(m_smoothed_camera, m_smoothed_camera, Eigen::Vector4f::Zero(), render_buffer);
#ifdef NGP_GUI
m_render_textures.front()->blit_from_cuda_mapping();
if (m_picture_in_picture_res > 0) {
Vector2i res(m_picture_in_picture_res, m_picture_in_picture_res*9/16);
m_pip_render_surface->resize(res);
if (m_pip_render_surface->spp() < 8) {
// a bit gross, but let's copy the keyframe's state into the global state in order to not have to plumb through the fov etc to render_frame.
CameraKeyframe backup = copy_camera_to_keyframe();
CameraKeyframe pip_kf = m_camera_path.eval_camera_path(m_camera_path.m_playtime);
set_camera_from_keyframe(pip_kf);
render_frame(pip_kf.m(), pip_kf.m(), Eigen::Vector4f::Zero(), *m_pip_render_surface);
set_camera_from_keyframe(backup);
m_pip_render_texture->blit_from_cuda_mapping();
}
}
#endif
} else {
#ifdef NGP_GUI
// Don't do DLSS when multi-view rendering
m_dlss = false;
m_render_surfaces.front().disable_dlss();
int n_views = n_dimensions_to_visualize()+1;
float d = std::sqrt((float)m_window_res.x() * (float)m_window_res.y() / (float)n_views);
int nx = (int)std::ceil((float)m_window_res.x() / d);
int ny = (int)std::ceil((float)n_views / (float)nx);
m_n_views = {nx, ny};
m_view_size = {m_window_res.x() / nx, m_window_res.y() / ny};
while (m_render_surfaces.size() > n_views) {
m_render_surfaces.pop_back();
}
m_render_textures.resize(n_views);
while (m_render_surfaces.size() < n_views) {
size_t idx = m_render_surfaces.size();
m_render_textures[idx] = std::make_shared<GLTexture>();
m_render_surfaces.emplace_back(m_render_textures[idx]);
}
int i = 0;
for (int y = 0; y < ny; ++y) {
for (int x = 0; x < nx; ++x) {
if (i >= n_views) {
return;
}
m_visualized_dimension = i-1;
m_render_surfaces[i].resize(m_view_size);
render_frame(m_smoothed_camera, m_smoothed_camera, Eigen::Vector4f::Zero(), m_render_surfaces[i]);
m_render_textures[i]->blit_from_cuda_mapping();
++i;
}
}
#else
throw std::runtime_error{"Multi-view rendering is only supported when compiling with NGP_GUI."};
#endif
}
}
#ifdef NGP_GUI
void Testbed::create_second_window() {
if (m_second_window.window) {
return;
}
bool frameless = false;
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
glfwWindowHint(GLFW_RESIZABLE, !frameless);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_CENTER_CURSOR, false);
glfwWindowHint(GLFW_DECORATED, !frameless);
glfwWindowHint(GLFW_SCALE_TO_MONITOR, frameless);
glfwWindowHint(GLFW_TRANSPARENT_FRAMEBUFFER, true);
// get the window size / coordinates
int win_w=0,win_h=0,win_x=0,win_y=0;
GLuint ps=0,vs=0;
{
win_w = 1920;
win_h = 1080;
win_x = 0x40000000;
win_y = 0x40000000;
static const char* copy_shader_vert = "\
layout (location = 0)\n\
in vec2 vertPos_data;\n\
out vec2 texCoords;\n\
void main(){\n\
gl_Position = vec4(vertPos_data.xy, 0.0, 1.0);\n\
texCoords = (vertPos_data.xy + 1.0) * 0.5; texCoords.y=1.0-texCoords.y;\n\
}";
static const char* copy_shader_frag = "\
in vec2 texCoords;\n\
out vec4 fragColor;\n\
uniform sampler2D screenTex;\n\
void main(){\n\
fragColor = texture(screenTex, texCoords.xy);\n\
}";
vs = compile_shader(false, copy_shader_vert);
ps = compile_shader(true, copy_shader_frag);
}
m_second_window.window = glfwCreateWindow(win_w, win_h, "Fullscreen Output", NULL, m_glfw_window);
if (win_x!=0x40000000) glfwSetWindowPos(m_second_window.window, win_x, win_y);
glfwMakeContextCurrent(m_second_window.window);
m_second_window.program = glCreateProgram();
glAttachShader(m_second_window.program, vs);
glAttachShader(m_second_window.program, ps);
glLinkProgram(m_second_window.program);
if (!check_shader(m_second_window.program, "shader program", true)) {
glDeleteProgram(m_second_window.program);
m_second_window.program = 0;
}
// vbo and vao
glGenVertexArrays(1, &m_second_window.vao);
glGenBuffers(1, &m_second_window.vbo);
glBindVertexArray(m_second_window.vao);
const float fsquadVerts[] = {
-1.0f, -1.0f,
-1.0f, 1.0f,
1.0f, 1.0f,
1.0f, 1.0f,
1.0f, -1.0f,
-1.0f, -1.0f};
glBindBuffer(GL_ARRAY_BUFFER, m_second_window.vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(fsquadVerts), fsquadVerts, GL_STATIC_DRAW);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
#endif //NGP_GUI
void Testbed::init_window(int resw, int resh, bool hidden, bool second_window) {
#ifndef NGP_GUI
throw std::runtime_error{"init_window failed: NGP was built without GUI support"};
#else
m_window_res = {resw, resh};
glfwSetErrorCallback(glfw_error_callback);
if (!glfwInit()) {
throw std::runtime_error{"GLFW could not be initialized."};
}
#ifdef NGP_VULKAN
try {
vulkan_and_ngx_init();
m_dlss_supported = true;
if (m_testbed_mode == ETestbedMode::Nerf) {
m_dlss = true;
}
} catch (const std::runtime_error& e) {
tlog::warning() << "Could not initialize Vulkan and NGX. DLSS not supported. (" << e.what() << ")";
}
#else
m_dlss_supported = false;
#endif
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GLFW_TRUE);
glfwWindowHint(GLFW_VISIBLE, hidden ? GLFW_FALSE : GLFW_TRUE);
std::string title = "Instant Neural Graphics Primitives v" NGP_VERSION " (";
switch (m_testbed_mode) {
case ETestbedMode::Image: title += "Image"; break;
case ETestbedMode::Sdf: title += "SDF"; break;
case ETestbedMode::Nerf: title += "NeRF"; break;
case ETestbedMode::Volume: title += "Volume"; break;
}
title += ")";
m_glfw_window = glfwCreateWindow(m_window_res.x(), m_window_res.y(), title.c_str(), NULL, NULL);
if (m_glfw_window == NULL) {
throw std::runtime_error{"GLFW window could not be created."};
}
glfwMakeContextCurrent(m_glfw_window);
#ifdef _WIN32
if (gl3wInit()) {
throw std::runtime_error{"GL3W could not be initialized."};
}
#else
glewExperimental = 1;
if (glewInit()) {
throw std::runtime_error{"GLEW could not be initialized."};
}
#endif
glfwSwapInterval(0); // Disable vsync
glfwSetWindowUserPointer(m_glfw_window, this);
glfwSetDropCallback(m_glfw_window, [](GLFWwindow* window, int count, const char** paths) {
Testbed* testbed = (Testbed*)glfwGetWindowUserPointer(window);
if (!testbed) {
return;
}
testbed->redraw_gui_next_frame();
for (int i = 0; i < count; i++) {
testbed->handle_file(paths[i]);
}
});
glfwSetKeyCallback(m_glfw_window, [](GLFWwindow* window, int key, int scancode, int action, int mods) {
Testbed* testbed = (Testbed*)glfwGetWindowUserPointer(window);
if (testbed) {
testbed->redraw_gui_next_frame();
}
});
glfwSetCursorPosCallback(m_glfw_window, [](GLFWwindow* window, double xpos, double ypos) {
Testbed* testbed = (Testbed*)glfwGetWindowUserPointer(window);
if (testbed) {
testbed->redraw_gui_next_frame();
}
});
glfwSetMouseButtonCallback(m_glfw_window, [](GLFWwindow* window, int button, int action, int mods) {
Testbed* testbed = (Testbed*)glfwGetWindowUserPointer(window);
if (testbed) {
testbed->redraw_gui_next_frame();
}
});
glfwSetScrollCallback(m_glfw_window, [](GLFWwindow* window, double xoffset, double yoffset) {
Testbed* testbed = (Testbed*)glfwGetWindowUserPointer(window);
if (testbed) {
testbed->redraw_gui_next_frame();
}
});
glfwSetWindowSizeCallback(m_glfw_window, [](GLFWwindow* window, int width, int height) {
Testbed* testbed = (Testbed*)glfwGetWindowUserPointer(window);
if (testbed) {
testbed->redraw_next_frame();
}
});
glfwSetFramebufferSizeCallback(m_glfw_window, [](GLFWwindow* window, int width, int height) {
Testbed* testbed = (Testbed*)glfwGetWindowUserPointer(window);
if (testbed) {
testbed->redraw_next_frame();
}
});
float xscale, yscale;
glfwGetWindowContentScale(m_glfw_window, &xscale, &yscale);
// IMGUI init
IMGUI_CHECKVERSION();
ImGui::CreateContext();
ImGuiIO& io = ImGui::GetIO(); (void)io;
//io.ConfigFlags |= ImGuiConfigFlags_NavEnableKeyboard; // Enable Keyboard Controls
io.ConfigInputTrickleEventQueue = false; // new ImGui event handling seems to make camera controls laggy if this is true.
ImGui::StyleColorsDark();
ImGui_ImplGlfw_InitForOpenGL(m_glfw_window, true);
ImGui_ImplOpenGL3_Init("#version 330 core");
ImGui::GetStyle().ScaleAllSizes(xscale);
ImFontConfig font_cfg;
font_cfg.SizePixels = 13.0f * xscale;
io.Fonts->AddFontDefault(&font_cfg);
// Make sure there's at least one usable render texture
m_render_textures = { std::make_shared<GLTexture>() };
m_render_surfaces.clear();
m_render_surfaces.emplace_back(m_render_textures.front());
m_render_surfaces.front().resize(m_window_res);
m_pip_render_texture = std::make_shared<GLTexture>();
m_pip_render_surface = std::make_unique<CudaRenderBuffer>(m_pip_render_texture);
m_render_window = true;
if (m_second_window.window == nullptr && second_window) {
create_second_window();
}
#endif // NGP_GUI
}
void Testbed::destroy_window() {
#ifndef NGP_GUI
throw std::runtime_error{"destroy_window failed: NGP was built without GUI support"};
#else
if (!m_render_window) {
throw std::runtime_error{"Window must be initialized to be destroyed."};
}
m_render_surfaces.clear();
m_render_textures.clear();
m_pip_render_surface.reset();
m_pip_render_texture.reset();
#ifdef NGP_VULKAN
m_dlss_supported = m_dlss = false;
vulkan_and_ngx_destroy();
#endif
ImGui_ImplOpenGL3_Shutdown();
ImGui_ImplGlfw_Shutdown();
ImGui::DestroyContext();
glfwDestroyWindow(m_glfw_window);
glfwTerminate();
m_glfw_window = nullptr;
m_render_window = false;
#endif //NGP_GUI
}
bool Testbed::frame() {
#ifdef NGP_GUI
if (m_render_window) {
if (!begin_frame_and_handle_user_input()) {
return false;
}
}
#endif
// Render against the trained neural network. If we're training and already close to convergence,
// we can skip rendering if the scene camera doesn't change
uint32_t n_to_skip = m_train ? tcnn::clamp(m_training_step / 16u, 15u, 255u) : 0;
if (m_render_skip_due_to_lack_of_camera_movement_counter > n_to_skip) {
m_render_skip_due_to_lack_of_camera_movement_counter = 0;
}
bool skip_rendering = m_render_skip_due_to_lack_of_camera_movement_counter++ != 0;
if (!m_dlss && m_max_spp > 0 && !m_render_surfaces.empty() && m_render_surfaces.front().spp() >= m_max_spp) {
skip_rendering = true;
if (!m_train) {
std::this_thread::sleep_for(1ms);
}
}
if (!skip_rendering || (std::chrono::steady_clock::now() - m_last_gui_draw_time_point) > 25ms) {
redraw_gui_next_frame();
}
try {
while (true) {
(*m_task_queue.tryPop())();
}
} catch (SharedQueueEmptyException&) {}
train_and_render(skip_rendering);
if (m_testbed_mode == ETestbedMode::Sdf && m_sdf.calculate_iou_online) {
m_sdf.iou = calculate_iou(m_train ? 64*64*64 : 128*128*128, m_sdf.iou_decay, false, true);
m_sdf.iou_decay = 0.f;
}
#ifdef NGP_GUI
if (m_render_window) {
if (m_gui_redraw) {
if (m_gather_histograms) {
gather_histograms();
}
draw_gui();
m_gui_redraw = false;
m_last_gui_draw_time_point = std::chrono::steady_clock::now();
}
ImGui::EndFrame();
}
#endif
return true;
}
fs::path Testbed::training_data_path() const {
return m_data_path.with_extension("training");
}
bool Testbed::want_repl() {
bool b=m_want_repl;
m_want_repl=false;
return b;
}
void Testbed::apply_camera_smoothing(float elapsed_ms) {
if (m_camera_smoothing) {
float decay = std::pow(0.02f, elapsed_ms/1000.0f);
m_smoothed_camera = log_space_lerp(m_smoothed_camera, m_camera, 1.0f - decay);
} else {
m_smoothed_camera = m_camera;
}
}
CameraKeyframe Testbed::copy_camera_to_keyframe() const {
return CameraKeyframe(m_camera, m_slice_plane_z, m_scale, fov(), m_aperture_size, m_nerf.glow_mode, m_nerf.glow_y_cutoff);
}
void Testbed::set_camera_from_keyframe(const CameraKeyframe& k) {
m_camera = k.m();
m_slice_plane_z = k.slice;
m_scale = k.scale;
set_fov(k.fov);
m_aperture_size = k.aperture_size;
m_nerf.glow_mode = k.glow_mode;
m_nerf.glow_y_cutoff = k.glow_y_cutoff;
}
void Testbed::set_camera_from_time(float t) {
if (m_camera_path.m_keyframes.empty())
return;
set_camera_from_keyframe(m_camera_path.eval_camera_path(t));
}
void Testbed::update_loss_graph() {
m_loss_graph[m_loss_graph_samples++ % m_loss_graph.size()] = std::log(m_loss_scalar.val());
}
uint32_t Testbed::n_dimensions_to_visualize() const {
return m_network->width(m_visualized_layer);
}
float Testbed::fov() const {
return focal_length_to_fov(1.0f, m_relative_focal_length[m_fov_axis]);
}
void Testbed::set_fov(float val) {
m_relative_focal_length = Vector2f::Constant(fov_to_focal_length(1, val));
}
Vector2f Testbed::fov_xy() const {
return focal_length_to_fov(Vector2i::Ones(), m_relative_focal_length);
}
void Testbed::set_fov_xy(const Vector2f& val) {
m_relative_focal_length = fov_to_focal_length(Vector2i::Ones(), val);
}
size_t Testbed::n_params() {
return m_network->n_params();
}
size_t Testbed::n_encoding_params() {
return m_network->n_params() - first_encoder_param();
}
size_t Testbed::first_encoder_param() {
auto layer_sizes = m_network->layer_sizes();
size_t first_encoder = 0;
for (auto size : layer_sizes) {
first_encoder += size.first * size.second;
}
return first_encoder;
}
uint32_t Testbed::network_width(uint32_t layer) const {
return m_network->width(layer);
}
uint32_t Testbed::network_num_forward_activations() const {
return m_network->num_forward_activations();
}
void Testbed::set_max_level(float maxlevel) {
if (!m_network) return;
auto hg_enc = dynamic_cast<GridEncoding<network_precision_t>*>(m_encoding.get());
if (hg_enc) {
hg_enc->set_max_level(maxlevel);
}
reset_accumulation();
}
void Testbed::set_min_level(float minlevel) {
if (!m_network) return;
auto hg_enc = dynamic_cast<GridEncoding<network_precision_t>*>(m_encoding.get());
if (hg_enc) {
hg_enc->set_quantize_threshold(powf(minlevel, 4.f) * 0.2f);
}
reset_accumulation();
}
void Testbed::set_visualized_layer(int layer) {
m_visualized_layer = layer;
m_visualized_dimension = std::max(-1, std::min(m_visualized_dimension, (int)m_network->width(layer)-1));
reset_accumulation();
}
ELossType Testbed::string_to_loss_type(const std::string& str) {
if (equals_case_insensitive(str, "L2")) {
return ELossType::L2;
} else if (equals_case_insensitive(str, "RelativeL2")) {
return ELossType::RelativeL2;
} else if (equals_case_insensitive(str, "L1")) {
return ELossType::L1;
} else if (equals_case_insensitive(str, "Mape")) {
return ELossType::Mape;
} else if (equals_case_insensitive(str, "Smape")) {
return ELossType::Smape;
} else if (equals_case_insensitive(str, "Huber") || equals_case_insensitive(str, "SmoothL1")) {
// Legacy: we used to refer to the Huber loss (L2 near zero, L1 further away) as "SmoothL1".
return ELossType::Huber;
} else if (equals_case_insensitive(str, "LogL1")) {
return ELossType::LogL1;
} else {
throw std::runtime_error{"Unknown loss type."};
}
}
Testbed::NetworkDims Testbed::network_dims() const {
switch (m_testbed_mode) {
case ETestbedMode::Nerf: return network_dims_nerf(); break;
case ETestbedMode::Sdf: return network_dims_sdf(); break;
case ETestbedMode::Image: return network_dims_image(); break;
case ETestbedMode::Volume: return network_dims_volume(); break;
default: throw std::runtime_error{"Invalid mode."};
}
}
void Testbed::reset_network(bool clear_density_grid) {
m_sdf.iou_decay = 0;
m_rng = default_rng_t{m_seed};
// Start with a low rendering resolution and gradually ramp up
m_render_ms.set(10000);
reset_accumulation();
m_nerf.training.counters_rgb.rays_per_batch = 1 << 12;
m_nerf.training.counters_rgb.measured_batch_size_before_compaction = 0;
m_nerf.training.n_steps_since_cam_update = 0;
m_nerf.training.n_steps_since_error_map_update = 0;
m_nerf.training.n_rays_since_error_map_update = 0;
m_nerf.training.n_steps_between_error_map_updates = 128;
m_nerf.training.error_map.is_cdf_valid = false;
m_nerf.training.density_grid_rng = default_rng_t{m_rng.next_uint()};
m_nerf.training.reset_camera_extrinsics();
m_loss_graph_samples = 0;
// Default config
json config = m_network_config;
json& encoding_config = config["encoding"];
json& loss_config = config["loss"];
json& optimizer_config = config["optimizer"];
json& network_config = config["network"];
auto dims = network_dims();
if (m_testbed_mode == ETestbedMode::Nerf) {
m_nerf.training.loss_type = string_to_loss_type(loss_config.value("otype", "L2"));
// Some of the Nerf-supported losses are not supported by tcnn::Loss,
// so just create a dummy L2 loss there. The NeRF code path will bypass
// the tcnn::Loss in any case.
loss_config["otype"] = "L2";
}
// Automatically determine certain parameters if we're dealing with the (hash)grid encoding
if (to_lower(encoding_config.value("otype", "OneBlob")).find("grid") != std::string::npos) {
encoding_config["n_pos_dims"] = dims.n_pos;
const uint32_t n_features_per_level = encoding_config.value("n_features_per_level", 2u);
if (encoding_config.contains("n_features") && encoding_config["n_features"] > 0) {
m_num_levels = (uint32_t)encoding_config["n_features"] / n_features_per_level;
} else {
m_num_levels = encoding_config.value("n_levels", 16u);
}
m_level_stats.resize(m_num_levels);
m_first_layer_column_stats.resize(m_num_levels);
const uint32_t log2_hashmap_size = encoding_config.value("log2_hashmap_size", 15);
m_base_grid_resolution = encoding_config.value("base_resolution", 0);
if (!m_base_grid_resolution) {
m_base_grid_resolution = 1u << ((log2_hashmap_size) / dims.n_pos);
encoding_config["base_resolution"] = m_base_grid_resolution;
}
float desired_resolution = 2048.0f; // Desired resolution of the finest hashgrid level over the unit cube
if (m_testbed_mode == ETestbedMode::Image) {
desired_resolution = m_image.resolution.maxCoeff() / 2.0f;
} else if (m_testbed_mode == ETestbedMode::Volume) {
desired_resolution = m_volume.world2index_scale;
}
// Automatically determine suitable per_level_scale
m_per_level_scale = encoding_config.value("per_level_scale", 0.0f);
if (m_per_level_scale <= 0.0f && m_num_levels > 1) {
m_per_level_scale = std::exp(std::log(desired_resolution * (float)m_nerf.training.dataset.aabb_scale / (float)m_base_grid_resolution) / (m_num_levels-1));
encoding_config["per_level_scale"] = m_per_level_scale;
}
tlog::info()
<< "GridEncoding: "
<< " Nmin=" << m_base_grid_resolution
<< " b=" << m_per_level_scale
<< " F=" << n_features_per_level
<< " T=2^" << log2_hashmap_size
<< " L=" << m_num_levels
;
}
m_loss.reset(create_loss<precision_t>(loss_config));
m_optimizer.reset(create_optimizer<precision_t>(optimizer_config));
size_t n_encoding_params = 0;
if (m_testbed_mode == ETestbedMode::Nerf) {
m_nerf.training.cam_exposure.resize(m_nerf.training.dataset.n_images, AdamOptimizer<Array3f>(1e-3f, Array3f::Zero()));
m_nerf.training.cam_pos_offset.resize(m_nerf.training.dataset.n_images, AdamOptimizer<Vector3f>(1e-4f, Vector3f::Zero()));
m_nerf.training.cam_rot_offset.resize(m_nerf.training.dataset.n_images, RotationAdamOptimizer(1e-4f));
m_nerf.training.cam_focal_length_offset = AdamOptimizer<Vector2f>(1e-5f);
m_nerf.training.reset_extra_dims(m_rng);
json& dir_encoding_config = config["dir_encoding"];
json& rgb_network_config = config["rgb_network"];
uint32_t n_dir_dims = 3;
uint32_t n_extra_dims = m_nerf.training.dataset.n_extra_dims();
m_network = m_nerf_network = std::make_shared<NerfNetwork<precision_t>>(
dims.n_pos,
n_dir_dims,
n_extra_dims,
dims.n_pos + 1, // The offset of 1 comes from the dt member variable of NerfCoordinate. HACKY
encoding_config,
dir_encoding_config,
network_config,
rgb_network_config
);
m_encoding = m_nerf_network->encoding();
n_encoding_params = m_encoding->n_params() + m_nerf_network->dir_encoding()->n_params();
tlog::info()
<< "Density model: " << dims.n_pos
<< "--[" << std::string(encoding_config["otype"])
<< "]-->" << m_nerf_network->encoding()->padded_output_width()
<< "--[" << std::string(network_config["otype"])
<< "(neurons=" << (int)network_config["n_neurons"] << ",layers=" << ((int)network_config["n_hidden_layers"]+2) << ")"
<< "]-->" << 1
;
tlog::info()
<< "Color model: " << n_dir_dims
<< "--[" << std::string(dir_encoding_config["otype"])
<< "]-->" << m_nerf_network->dir_encoding()->padded_output_width() << "+" << network_config.value("n_output_dims", 16u)
<< "--[" << std::string(rgb_network_config["otype"])
<< "(neurons=" << (int)rgb_network_config["n_neurons"] << ",layers=" << ((int)rgb_network_config["n_hidden_layers"]+2) << ")"
<< "]-->" << 3
;
// Create distortion map model
{
json& distortion_map_optimizer_config = config.contains("distortion_map") && config["distortion_map"].contains("optimizer") ? config["distortion_map"]["optimizer"] : optimizer_config;
m_distortion.resolution = Vector2i::Constant(32);
if (config.contains("distortion_map") && config["distortion_map"].contains("resolution")) {
from_json(config["distortion_map"]["resolution"], m_distortion.resolution);
}
m_distortion.map = std::make_shared<TrainableBuffer<2, 2, float>>(m_distortion.resolution);
m_distortion.optimizer.reset(create_optimizer<float>(distortion_map_optimizer_config));
m_distortion.trainer = std::make_shared<Trainer<float, float>>(m_distortion.map, m_distortion.optimizer, std::shared_ptr<Loss<float>>{create_loss<float>(loss_config)}, m_seed);
}
} else {
uint32_t alignment = network_config.contains("otype") && (equals_case_insensitive(network_config["otype"], "FullyFusedMLP") || equals_case_insensitive(network_config["otype"], "MegakernelMLP")) ? 16u : 8u;
if (encoding_config.contains("otype") && equals_case_insensitive(encoding_config["otype"], "Takikawa")) {
if (m_sdf.octree_depth_target == 0) {
m_sdf.octree_depth_target = encoding_config["n_levels"];
}
if (!m_sdf.triangle_octree || m_sdf.triangle_octree->depth() != m_sdf.octree_depth_target) {
m_sdf.triangle_octree.reset(new TriangleOctree{});
m_sdf.triangle_octree->build(*m_sdf.triangle_bvh, m_sdf.triangles_cpu, m_sdf.octree_depth_target);
m_sdf.octree_depth_target = m_sdf.triangle_octree->depth();
m_sdf.brick_data.free_memory();
}
m_encoding.reset(new TakikawaEncoding<precision_t>(
encoding_config["starting_level"],
m_sdf.triangle_octree,
tcnn::string_to_interpolation_type(encoding_config.value("interpolation", "linear"))
));
m_network = std::make_shared<NetworkWithInputEncoding<precision_t>>(m_encoding, dims.n_output, network_config);
m_sdf.uses_takikawa_encoding = true;
} else {
m_encoding.reset(create_encoding<precision_t>(dims.n_input, encoding_config));
m_network = std::make_shared<NetworkWithInputEncoding<precision_t>>(m_encoding, dims.n_output, network_config);
m_sdf.uses_takikawa_encoding = false;
if (m_sdf.octree_depth_target == 0 && encoding_config.contains("n_levels")) {
m_sdf.octree_depth_target = encoding_config["n_levels"];
}
}
n_encoding_params = m_encoding->n_params();
tlog::info()
<< "Model: " << dims.n_input
<< "--[" << std::string(encoding_config["otype"])
<< "]-->" << m_encoding->padded_output_width()
<< "--[" << std::string(network_config["otype"])
<< "(neurons=" << (int)network_config["n_neurons"] << ",layers=" << ((int)network_config["n_hidden_layers"]+2) << ")"
<< "]-->" << dims.n_output;
}
size_t n_network_params = m_network->n_params() - n_encoding_params;
tlog::info() << " total_encoding_params=" << n_encoding_params << " total_network_params=" << n_network_params;
m_trainer = std::make_shared<Trainer<float, precision_t, precision_t>>(m_network, m_optimizer, m_loss, m_seed);
m_training_step = 0;
m_training_start_time_point = std::chrono::steady_clock::now();
// Create envmap model
{
json& envmap_loss_config = config.contains("envmap") && config["envmap"].contains("loss") ? config["envmap"]["loss"] : loss_config;
json& envmap_optimizer_config = config.contains("envmap") && config["envmap"].contains("optimizer") ? config["envmap"]["optimizer"] : optimizer_config;
m_envmap.loss_type = string_to_loss_type(envmap_loss_config.value("otype", "L2"));
m_envmap.resolution = m_nerf.training.dataset.envmap_resolution;
m_envmap.envmap = std::make_shared<TrainableBuffer<4, 2, float>>(m_envmap.resolution);
m_envmap.optimizer.reset(create_optimizer<float>(envmap_optimizer_config));
m_envmap.trainer = std::make_shared<Trainer<float, float, float>>(m_envmap.envmap, m_envmap.optimizer, std::shared_ptr<Loss<float>>{create_loss<float>(envmap_loss_config)}, m_seed);
if (m_nerf.training.dataset.envmap_data.data()) {
m_envmap.trainer->set_params_full_precision(m_nerf.training.dataset.envmap_data.data(), m_nerf.training.dataset.envmap_data.size());
}
}
if (clear_density_grid) {
m_nerf.density_grid.memset(0);
m_nerf.density_grid_bitfield.memset(0);
}
}
Testbed::Testbed(ETestbedMode mode)
: m_testbed_mode(mode)
{
if (!(__CUDACC_VER_MAJOR__ > 10 || (__CUDACC_VER_MAJOR__ == 10 && __CUDACC_VER_MINOR__ >= 2))) {
throw std::runtime_error{"Testbed required CUDA 10.2 or later."};
}
#ifdef NGP_GUI
// Ensure we're running on the GPU that'll host our GUI. To do so, try creating a dummy
// OpenGL context, figure out the GPU it's running on, and then kill that context again.
if (glfwInit()) {
glfwWindowHint(GLFW_VISIBLE, GLFW_FALSE);
GLFWwindow* offscreen_context = glfwCreateWindow(640, 480, "", NULL, NULL);
if (offscreen_context) {
glfwMakeContextCurrent(offscreen_context);
int gl_device = -1;
unsigned int device_count = 0;
if (cudaGLGetDevices(&device_count, &gl_device, 1, cudaGLDeviceListAll) == cudaSuccess) {
if (device_count > 0 && gl_device != -1) {
set_cuda_device(gl_device);
}
}
glfwDestroyWindow(offscreen_context);
}
glfwTerminate();
}
#endif
uint32_t compute_capability = cuda_compute_capability();
if (compute_capability < MIN_GPU_ARCH) {
tlog::warning() << "Insufficient compute capability " << compute_capability << " detected.";
tlog::warning() << "This program was compiled for >=" << MIN_GPU_ARCH << " and may thus behave unexpectedly.";
}
m_network_config = {
{"loss", {
{"otype", "L2"}
}},
{"optimizer", {
{"otype", "Adam"},
{"learning_rate", 1e-3},
{"beta1", 0.9f},
{"beta2", 0.99f},
{"epsilon", 1e-15f},
{"l2_reg", 1e-6f},
}},
{"encoding", {
{"otype", "HashGrid"},
{"n_levels", 16},
{"n_features_per_level", 2},
{"log2_hashmap_size", 19},
{"base_resolution", 16},
}},
{"network", {
{"otype", "FullyFusedMLP"},
{"n_neurons", 64},
{"n_layers", 2},
{"activation", "ReLU"},
{"output_activation", "None"},
}},
};
reset_camera();
set_exposure(0);
set_min_level(0.f);
set_max_level(1.f);
}
Testbed::~Testbed() {
if (m_render_window) {
destroy_window();
}
}
void Testbed::train(uint32_t batch_size) {
if (!m_training_data_available) {
m_train = false;
return;
}
if (!m_dlss) {
// No immediate redraw necessary
reset_accumulation(false, false);
}
uint32_t n_prep_to_skip = m_testbed_mode == ETestbedMode::Nerf ? tcnn::clamp(m_training_step / 16u, 1u, 16u) : 1u;
if (m_training_step % n_prep_to_skip == 0) {
auto start = std::chrono::steady_clock::now();
ScopeGuard timing_guard{[&]() {
m_training_prep_ms.update(std::chrono::duration<float, std::milli>(std::chrono::steady_clock::now()-start).count() / n_prep_to_skip);
}};
switch (m_testbed_mode) {
case ETestbedMode::Nerf: training_prep_nerf(batch_size, m_stream.get()); break;
case ETestbedMode::Sdf: training_prep_sdf(batch_size, m_stream.get()); break;
case ETestbedMode::Image: training_prep_image(batch_size, m_stream.get()); break;
case ETestbedMode::Volume: training_prep_volume(batch_size, m_stream.get()); break;
default: throw std::runtime_error{"Invalid training mode."};
}
CUDA_CHECK_THROW(cudaStreamSynchronize(m_stream.get()));
}
// Find leaf optimizer and update its settings
json* leaf_optimizer_config = &m_network_config["optimizer"];
while (leaf_optimizer_config->contains("nested")) {
leaf_optimizer_config = &(*leaf_optimizer_config)["nested"];
}
(*leaf_optimizer_config)["optimize_matrix_params"] = m_train_network;
(*leaf_optimizer_config)["optimize_non_matrix_params"] = m_train_encoding;
m_optimizer->update_hyperparams(m_network_config["optimizer"]);
bool get_loss_scalar = m_training_step % 16 == 0;
{
auto start = std::chrono::steady_clock::now();
ScopeGuard timing_guard{[&]() {
m_training_ms.update(std::chrono::duration<float, std::milli>(std::chrono::steady_clock::now()-start).count());
}};
switch (m_testbed_mode) {
case ETestbedMode::Nerf: train_nerf(batch_size, get_loss_scalar, m_stream.get()); break;
case ETestbedMode::Sdf: train_sdf(batch_size, get_loss_scalar, m_stream.get()); break;
case ETestbedMode::Image: train_image(batch_size, get_loss_scalar, m_stream.get()); break;
case ETestbedMode::Volume: train_volume(batch_size, get_loss_scalar, m_stream.get()); break;
default: throw std::runtime_error{"Invalid training mode."};
}
CUDA_CHECK_THROW(cudaStreamSynchronize(m_stream.get()));
}
if (get_loss_scalar) {
update_loss_graph();
}
}
Vector2f Testbed::calc_focal_length(const Vector2i& resolution, int fov_axis, float zoom) const {
return m_relative_focal_length * resolution[fov_axis] * zoom;
}
Vector2f Testbed::render_screen_center() const {
// see pixel_to_ray for how screen center is used; 0.5,0.5 is 'normal'. we flip so that it becomes the point in the original image we want to center on.
auto screen_center = m_screen_center;
return {(0.5f-screen_center.x())*m_zoom + 0.5f, (0.5-screen_center.y())*m_zoom + 0.5f};
}
__global__ void dlss_prep_kernel(
ETestbedMode mode,
Vector2i resolution,
uint32_t sample_index,
Vector2f focal_length,
Vector2f screen_center,
Vector3f parallax_shift,
bool snap_to_pixel_centers,
float* depth_buffer,
Matrix<float, 3, 4> camera,
Matrix<float, 3, 4> prev_camera,
cudaSurfaceObject_t depth_surface,
cudaSurfaceObject_t mvec_surface,
cudaSurfaceObject_t exposure_surface,
Lens lens,
const float view_dist,
const float prev_view_dist,
const Vector2f image_pos,
const Vector2f prev_image_pos,
const Vector2i image_resolution,
const Vector2i quilting_dims
) {
uint32_t x = threadIdx.x + blockDim.x * blockIdx.x;
uint32_t y = threadIdx.y + blockDim.y * blockIdx.y;
if (x >= resolution.x() || y >= resolution.y()) {
return;
}
uint32_t idx = x + resolution.x() * y;
uint32_t x_orig = x;
uint32_t y_orig = y;
if (quilting_dims != Vector2i::Ones()) {
apply_quilting(&x, &y, resolution, parallax_shift, quilting_dims);
}
const float depth = depth_buffer[idx];
Vector2f mvec = mode == ETestbedMode::Image ? motion_vector_2d(
sample_index,
{x, y},
resolution.cwiseQuotient(quilting_dims),
image_resolution,
screen_center,
view_dist,
prev_view_dist,
image_pos,
prev_image_pos,
snap_to_pixel_centers
) : motion_vector_3d(
sample_index,
{x, y},
resolution.cwiseQuotient(quilting_dims),
focal_length,
camera,
prev_camera,
screen_center,
parallax_shift,
snap_to_pixel_centers,
depth,
lens
);
surf2Dwrite(make_float2(mvec.x(), mvec.y()), mvec_surface, x_orig * sizeof(float2), y_orig);
// Scale depth buffer to be guaranteed in [0,1].
surf2Dwrite(std::min(std::max(depth / 128.0f, 0.0f), 1.0f), depth_surface, x_orig * sizeof(float), y_orig);
// First thread write an exposure factor of 1. Since DLSS will run on tonemapped data,
// exposure is assumed to already have been applied to DLSS' inputs.
if (x_orig == 0 && y_orig == 0) {
surf2Dwrite(1.0f, exposure_surface, 0, 0);
}
}
void Testbed::render_frame(const Matrix<float, 3, 4>& camera_matrix0, const Matrix<float, 3, 4>& camera_matrix1, const Vector4f& nerf_rolling_shutter, CudaRenderBuffer& render_buffer, bool to_srgb) {
Vector2i max_res = m_window_res.cwiseMax(render_buffer.in_resolution());
render_buffer.clear_frame(m_stream.get());
Vector2f focal_length = calc_focal_length(render_buffer.in_resolution(), m_fov_axis, m_zoom);
Vector2f screen_center = render_screen_center();
if (m_quilting_dims != Vector2i::Ones() && m_quilting_dims != Vector2i{2, 1}) {
// In the case of a holoplay lenticular screen, m_scale represents the inverse distance of the head above the display.
m_parallax_shift.z() = 1.0f / m_scale;
}
switch (m_testbed_mode) {
case ETestbedMode::Nerf:
if (!m_render_ground_truth || m_ground_truth_alpha < 1.0f) {
render_nerf(render_buffer, max_res, focal_length, camera_matrix0, camera_matrix1, nerf_rolling_shutter, screen_center, m_stream.get());
}
break;
case ETestbedMode::Sdf:
{
if (m_render_ground_truth && m_sdf.groundtruth_mode == ESDFGroundTruthMode::SDFBricks) {
if (m_sdf.brick_data.size() == 0) {
tlog::info() << "Building voxel brick positions for " << m_sdf.triangle_octree->n_dual_nodes() << " dual nodes.";
m_sdf.brick_res = 5;
std::vector<Eigen::Vector3f> positions = m_sdf.triangle_octree->build_brick_voxel_position_list(m_sdf.brick_res);
GPUMemory<Eigen::Vector3f> positions_gpu;
positions_gpu.resize_and_copy_from_host(positions);
m_sdf.brick_data.resize(positions.size());
tlog::info() << positions_gpu.size() << " voxel brick positions. Computing SDFs.";
m_sdf.triangle_bvh->signed_distance_gpu(
positions.size(),
EMeshSdfMode::Watertight, //m_sdf.mesh_sdf_mode, // watertight seems to be the best method for 'one off' SDF signing
positions_gpu.data(),
m_sdf.brick_data.data(),
m_sdf.triangles_gpu.data(),
false,
m_stream.get()
);
}
}
distance_fun_t distance_fun =
m_render_ground_truth ? (distance_fun_t)[&](uint32_t n_elements, const Vector3f* positions, float* distances, cudaStream_t stream) {
if (n_elements == 0) {
return;
}
if (m_sdf.groundtruth_mode == ESDFGroundTruthMode::SDFBricks) {
// linear_kernel(sdf_brick_kernel, 0, stream,
// n_elements,
// positions.data(),
// distances.data(),
// m_sdf.triangle_octree->nodes_gpu(),
// m_sdf.triangle_octree->dual_nodes_gpu(),
// std::max(1u,std::min(m_sdf.triangle_octree->depth(), m_sdf.brick_level)),
// m_sdf.brick_data.data(),
// m_sdf.brick_res,
// m_sdf.brick_quantise_bits
// );
} else {
m_sdf.triangle_bvh->signed_distance_gpu(
n_elements,
m_sdf.mesh_sdf_mode,
(Vector3f*)positions,
distances,
m_sdf.triangles_gpu.data(),
false,
m_stream.get()
);
}
} : (distance_fun_t)[&](uint32_t n_elements, const Vector3f* positions, float* distances, cudaStream_t stream) {
if (n_elements == 0) {
return;
}
n_elements = next_multiple(n_elements, tcnn::batch_size_granularity);
GPUMatrix<float> positions_matrix((float*)positions, 3, n_elements);
GPUMatrix<float, RM> distances_matrix(distances, 1, n_elements);
m_network->inference(stream, positions_matrix, distances_matrix);
};
normals_fun_t normals_fun =
m_render_ground_truth ? (normals_fun_t)[&](uint32_t n_elements, const Vector3f* positions, Vector3f* normals, cudaStream_t stream) {
// NO-OP. Normals will automatically be populated by raytrace
} : (normals_fun_t)[&](uint32_t n_elements, const Vector3f* positions, Vector3f* normals, cudaStream_t stream) {
if (n_elements == 0) {
return;
}
n_elements = next_multiple(n_elements, tcnn::batch_size_granularity);
GPUMatrix<float> positions_matrix((float*)positions, 3, n_elements);
GPUMatrix<float> normals_matrix((float*)normals, 3, n_elements);
m_network->input_gradient(stream, 0, positions_matrix, normals_matrix);
};
render_sdf(
distance_fun,
normals_fun,
render_buffer,
max_res,
focal_length,
camera_matrix0,
screen_center,
m_stream.get()
);
}
break;
case ETestbedMode::Image:
render_image(render_buffer, m_stream.get());
break;
case ETestbedMode::Volume:
render_volume(render_buffer, focal_length, camera_matrix0, screen_center, m_stream.get());
break;
default:
throw std::runtime_error{"Invalid render mode."};
}
render_buffer.set_color_space(m_color_space);
render_buffer.set_tonemap_curve(m_tonemap_curve);
// Prepare DLSS data: motion vectors, scaled depth, exposure
if (render_buffer.dlss()) {
auto res = render_buffer.in_resolution();
bool distortion = m_testbed_mode == ETestbedMode::Nerf && m_nerf.render_with_lens_distortion;
const dim3 threads = { 16, 8, 1 };
const dim3 blocks = { div_round_up((uint32_t)res.x(), threads.x), div_round_up((uint32_t)res.y(), threads.y), 1 };
dlss_prep_kernel<<<blocks, threads, 0, m_stream.get()>>>(
m_testbed_mode,
res,
render_buffer.spp(),
focal_length,
screen_center,
m_parallax_shift,
m_snap_to_pixel_centers,
render_buffer.depth_buffer(),
camera_matrix0,
m_prev_camera,
render_buffer.dlss()->depth(),
render_buffer.dlss()->mvec(),
render_buffer.dlss()->exposure(),
distortion ? m_nerf.render_lens : Lens{},
m_scale,
m_prev_scale,
m_image.pos,
m_image.prev_pos,
m_image.resolution,
m_quilting_dims
);
render_buffer.set_dlss_sharpening(m_dlss_sharpening);
}
m_prev_camera = camera_matrix0;
m_prev_scale = m_scale;
m_image.prev_pos = m_image.pos;
render_buffer.accumulate(m_exposure, m_stream.get());
render_buffer.tonemap(m_exposure, m_background_color, to_srgb ? EColorSpace::SRGB : EColorSpace::Linear, m_stream.get());
if (m_testbed_mode == ETestbedMode::Nerf) {
// Overlay the ground truth image if requested
if (m_render_ground_truth) {
auto const& metadata = m_nerf.training.dataset.metadata[m_nerf.training.view];
if (m_ground_truth_render_mode == EGroundTruthRenderMode::Shade) {
render_buffer.overlay_image(
m_ground_truth_alpha,
Array3f::Constant(m_exposure) + m_nerf.training.cam_exposure[m_nerf.training.view].variable(),
m_background_color,
to_srgb ? EColorSpace::SRGB : EColorSpace::Linear,
metadata.pixels,
metadata.image_data_type,
metadata.resolution,
m_fov_axis,
m_zoom,
Vector2f::Constant(0.5f),
m_stream.get()
);
} else if (m_ground_truth_render_mode == EGroundTruthRenderMode::Depth && metadata.depth) {
render_buffer.overlay_depth(
m_ground_truth_alpha,
metadata.depth,
1.0f/m_nerf.training.dataset.scale,
metadata.resolution,
m_fov_axis,
m_zoom,
Vector2f::Constant(0.5f),
m_stream.get()
);
}
}
// Visualize the accumulated error map if requested
if (m_nerf.training.render_error_overlay) {
const float* err_data = m_nerf.training.error_map.data.data();
Vector2i error_map_res = m_nerf.training.error_map.resolution;
if (m_render_ground_truth) {
err_data = m_nerf.training.dataset.sharpness_data.data();
error_map_res = m_nerf.training.dataset.sharpness_resolution;
}
size_t emap_size = error_map_res.x() * error_map_res.y();
err_data += emap_size * m_nerf.training.view;
static GPUMemory<float> average_error;
average_error.enlarge(1);
average_error.memset(0);
const float* aligned_err_data_s = (const float*)(((size_t)err_data)&~15);
const float* aligned_err_data_e = (const float*)(((size_t)(err_data+emap_size))&~15);
size_t reduce_size = aligned_err_data_e - aligned_err_data_s;
reduce_sum(aligned_err_data_s, [reduce_size] __device__ (float val) { return max(val,0.f) / (reduce_size); }, average_error.data(), reduce_size, m_stream.get());
auto const &metadata = m_nerf.training.dataset.metadata[m_nerf.training.view];
render_buffer.overlay_false_color(metadata.resolution, to_srgb, m_fov_axis, m_stream.get(), err_data, error_map_res, average_error.data(), m_nerf.training.error_overlay_brightness, m_render_ground_truth);
}
}
CUDA_CHECK_THROW(cudaStreamSynchronize(m_stream.get()));
}
void Testbed::determine_autofocus_target_from_pixel(const Vector2i& focus_pixel) {
float depth;
const auto& surface = m_render_surfaces.front();
if (surface.depth_buffer()) {
auto res = surface.in_resolution();
Vector2i depth_pixel = focus_pixel.cast<float>().cwiseProduct(res.cast<float>()).cwiseQuotient(m_window_res.cast<float>()).cast<int>();
depth_pixel = depth_pixel.cwiseMin(res).cwiseMax(0);
CUDA_CHECK_THROW(cudaMemcpy(&depth, surface.depth_buffer() + depth_pixel.x() + depth_pixel.y() * res.x(), sizeof(float), cudaMemcpyDeviceToHost));
} else {
depth = m_scale;
}
auto ray = pixel_to_ray_pinhole(0, focus_pixel, m_window_res, calc_focal_length(m_window_res, m_fov_axis, m_zoom), m_smoothed_camera, render_screen_center());
m_autofocus_target = ray.o + ray.d * depth;
m_autofocus = true; // If someone shift-clicked, that means they want the AUTOFOCUS
}
void Testbed::autofocus() {
float new_slice_plane_z = std::max(view_dir().dot(m_autofocus_target - view_pos()), 0.1f) - m_scale;
if (new_slice_plane_z != m_slice_plane_z) {
m_slice_plane_z = new_slice_plane_z;
if (m_aperture_size != 0.0f) {
reset_accumulation();
}
}
}
Testbed::LevelStats compute_level_stats(const float* params, size_t n_params) {
Testbed::LevelStats s = {};
for (size_t i = 0; i < n_params; ++i) {
float v = params[i];
float av = fabsf(v);
if (av < 0.00001f) {
s.numzero++;
} else {
if (s.count == 0) s.min = s.max = v;
s.count++;
s.x += v;
s.xsquared += v * v;
s.min = min(s.min, v);
s.max = max(s.max, v);
}
}
return s;
}
void Testbed::gather_histograms() {
int n_params = (int)m_network->n_params();
int first_encoder = first_encoder_param();
int n_encoding_params = n_params - first_encoder;
auto hg_enc = dynamic_cast<GridEncoding<network_precision_t>*>(m_encoding.get());
if (hg_enc && m_trainer->params()) {
std::vector<float> grid(n_encoding_params);
uint32_t m = m_network->layer_sizes().front().first;
uint32_t n = m_network->layer_sizes().front().second;
std::vector<float> first_layer_rm(m * n);
CUDA_CHECK_THROW(cudaMemcpyAsync(grid.data(), m_trainer->params() + first_encoder, grid.size() * sizeof(float), cudaMemcpyDeviceToHost, m_stream.get()));
CUDA_CHECK_THROW(cudaMemcpyAsync(first_layer_rm.data(), m_trainer->params(), first_layer_rm.size() * sizeof(float), cudaMemcpyDeviceToHost, m_stream.get()));
CUDA_CHECK_THROW(cudaStreamSynchronize(m_stream.get()));
for (int l = 0; l < m_num_levels; ++l) {
m_level_stats[l] = compute_level_stats(grid.data() + hg_enc->level_params_offset(l), hg_enc->level_n_params(l));
}
int numquant = 0;
m_quant_percent = float(numquant * 100) / (float)n_encoding_params;
if (m_histo_level < m_num_levels) {
size_t nperlevel = hg_enc->level_n_params(m_histo_level);
const float* d = grid.data() + hg_enc->level_params_offset(m_histo_level);
float scale = 128.f / (m_histo_scale); // fixed scale for now to make it more comparable between levels
memset(m_histo, 0, sizeof(m_histo));
for (int i = 0; i < nperlevel; ++i) {
float v = *d++;
if (v == 0.f) {
continue;
}
int bin = (int)floor(v * scale + 128.5f);
if (bin >= 0 && bin <= 256) {
m_histo[bin]++;
}
}
}
}
}
// Increment this number when making a change to the snapshot format
static const size_t SNAPSHOT_FORMAT_VERSION = 1;
void Testbed::save_snapshot(const std::string& filepath_string, bool include_optimizer_state) {
fs::path filepath = filepath_string;
m_network_config["snapshot"] = m_trainer->serialize(include_optimizer_state);
auto& snapshot = m_network_config["snapshot"];
snapshot["version"] = SNAPSHOT_FORMAT_VERSION;
if (m_testbed_mode == ETestbedMode::Nerf) {
snapshot["density_grid_size"] = NERF_GRIDSIZE();
GPUMemory<__half> density_grid_fp16(m_nerf.density_grid.size());
parallel_for_gpu(density_grid_fp16.size(), [density_grid=m_nerf.density_grid.data(), density_grid_fp16=density_grid_fp16.data()] __device__ (size_t i) {
density_grid_fp16[i] = (__half)density_grid[i];
});
snapshot["density_grid_binary"] = density_grid_fp16;
snapshot["nerf"]["aabb_scale"] = m_nerf.training.dataset.aabb_scale;
}
snapshot["training_step"] = m_training_step;
snapshot["loss"] = m_loss_scalar.val();
snapshot["aabb"] = m_aabb;
snapshot["bounding_radius"] = m_bounding_radius;
to_json(snapshot["render_aabb_to_local"], m_render_aabb_to_local);
snapshot["render_aabb"] = m_render_aabb;
if (m_testbed_mode == ETestbedMode::Nerf) {
snapshot["nerf"]["rgb"]["rays_per_batch"] = m_nerf.training.counters_rgb.rays_per_batch;
snapshot["nerf"]["rgb"]["measured_batch_size"] = m_nerf.training.counters_rgb.measured_batch_size;
snapshot["nerf"]["rgb"]["measured_batch_size_before_compaction"] = m_nerf.training.counters_rgb.measured_batch_size_before_compaction;
snapshot["nerf"]["dataset"] = m_nerf.training.dataset;
}
m_network_config_path = filepath;
std::ofstream f(m_network_config_path.str(), std::ios::out | std::ios::binary);
json::to_msgpack(m_network_config, f);
}
void Testbed::load_snapshot(const std::string& filepath_string) {
auto config = load_network_config(filepath_string);
if (!config.contains("snapshot")) {
throw std::runtime_error{fmt::format("File {} does not contain a snapshot.", filepath_string)};
}
const auto& snapshot = config["snapshot"];
if (snapshot.value("version", 0) < SNAPSHOT_FORMAT_VERSION) {
throw std::runtime_error{"Snapshot uses an old format."};
}
m_aabb = snapshot.value("aabb", m_aabb);
m_bounding_radius = snapshot.value("bounding_radius", m_bounding_radius);
if (m_testbed_mode == ETestbedMode::Sdf) {
set_scale(m_bounding_radius * 1.5f);
} else if (m_testbed_mode == ETestbedMode::Nerf) {
if (snapshot["density_grid_size"] != NERF_GRIDSIZE()) {
throw std::runtime_error{"Incompatible grid size."};
}
m_nerf.training.counters_rgb.rays_per_batch = snapshot["nerf"]["rgb"]["rays_per_batch"];
m_nerf.training.counters_rgb.measured_batch_size = snapshot["nerf"]["rgb"]["measured_batch_size"];
m_nerf.training.counters_rgb.measured_batch_size_before_compaction = snapshot["nerf"]["rgb"]["measured_batch_size_before_compaction"];
// If we haven't got a nerf dataset loaded, load dataset metadata from the snapshot
// and render using just that.
if (m_data_path.empty() && snapshot["nerf"].contains("dataset")) {
m_nerf.training.dataset = snapshot["nerf"]["dataset"];
load_nerf();
} else {
if (snapshot["nerf"].contains("aabb_scale")) {
m_nerf.training.dataset.aabb_scale = snapshot["nerf"]["aabb_scale"];
}
}
load_nerf_post();
GPUMemory<__half> density_grid_fp16 = snapshot["density_grid_binary"];
m_nerf.density_grid.resize(density_grid_fp16.size());
parallel_for_gpu(density_grid_fp16.size(), [density_grid=m_nerf.density_grid.data(), density_grid_fp16=density_grid_fp16.data()] __device__ (size_t i) {
density_grid[i] = (float)density_grid_fp16[i];
});
if (m_nerf.density_grid.size() == NERF_GRIDSIZE() * NERF_GRIDSIZE() * NERF_GRIDSIZE() * (m_nerf.max_cascade + 1)) {
update_density_grid_mean_and_bitfield(nullptr);
} else if (m_nerf.density_grid.size() != 0) {
// A size of 0 indicates that the density grid was never populated, which is a valid state of a (yet) untrained model.
throw std::runtime_error{"Incompatible number of grid cascades."};
}
}
// Needs to happen after `load_nerf_post()`
if (snapshot.contains("render_aabb_to_local")) from_json(snapshot.at("render_aabb_to_local"), m_render_aabb_to_local);
m_render_aabb = snapshot.value("render_aabb", m_render_aabb);
m_network_config_path = filepath_string;
m_network_config = config;
reset_network(false);
m_training_step = m_network_config["snapshot"]["training_step"];
m_loss_scalar.set(m_network_config["snapshot"]["loss"]);
m_trainer->deserialize(m_network_config["snapshot"]);
}
void Testbed::load_camera_path(const std::string& filepath_string) {
m_camera_path.load(filepath_string, Matrix<float, 3, 4>::Identity());
}
bool Testbed::loop_animation() {
return m_camera_path.m_loop;
}
void Testbed::set_loop_animation(bool value) {
m_camera_path.m_loop = value;
}
NGP_NAMESPACE_END