Update README.md
Browse files
README.md
CHANGED
@@ -2,4 +2,33 @@
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
4 |
|
5 |
+
# CLIP ViT-H/14 frozen xlm roberta large - LAION-5B
|
6 |
+
|
7 |
+
[CLIP ViT-H/14 frozen xlm roberta large - LAION-5B](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k) model converted from OpenCLIP to HuggingFace Transformers.
|
8 |
+
|
9 |
+
See https://gist.github.com/calpt/8e3555bd11f1916b5169c8125117e5ee for conversion script and more info.
|
10 |
+
|
11 |
+
## Usage
|
12 |
+
|
13 |
+
Model uses custom code. Make sure to pass `trust_remote_code=True` when loading the model.
|
14 |
+
|
15 |
+
Example:
|
16 |
+
```python
|
17 |
+
import torch
|
18 |
+
from PIL import Image
|
19 |
+
from transformers import AutoModel, AutoFeatureExtractor, AutoTokenizer
|
20 |
+
|
21 |
+
model = AutoModel.from_pretrained("calpt/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k", trust_remote_code=True)
|
22 |
+
|
23 |
+
processor = AutoFeatureExtractor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
|
25 |
+
|
26 |
+
image_input = processor(Image.open("CLIP.png"), return_tensors="pt")
|
27 |
+
text_input = tokenizer(["a diagram", "a dog", "a cat"], return_tensors="pt", padding=True)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(**image_input, **text_input)
|
31 |
+
text_probs = (100.0 * outputs.logits_per_image.softmax(dim=-1))
|
32 |
+
|
33 |
+
print("Label probs:", text_probs)
|
34 |
+
```
|