File size: 6,727 Bytes
f714f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: mit
base_model: Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vakyansh-wav2vec2-punjabi-pam-10-audio-abuse-feature
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vakyansh-wav2vec2-punjabi-pam-10-audio-abuse-feature

This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7070
- Accuracy: 0.7112
- Macro F1-score: 0.7112

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
| 6.7326        | 0.77  | 10   | 6.7224          | 0.0      | 0.0            |
| 6.682         | 1.54  | 20   | 6.5714          | 0.2888   | 0.0298         |
| 6.523         | 2.31  | 30   | 6.3268          | 0.4877   | 0.3619         |
| 6.247         | 3.08  | 40   | 6.0039          | 0.4768   | 0.3229         |
| 6.0644        | 3.85  | 50   | 5.7134          | 0.4796   | 0.3241         |
| 5.7866        | 4.62  | 60   | 5.4332          | 0.4796   | 0.3241         |
| 5.5229        | 5.38  | 70   | 5.2026          | 0.4796   | 0.3241         |
| 5.2712        | 6.15  | 80   | 4.9856          | 0.4796   | 0.3241         |
| 5.1268        | 6.92  | 90   | 4.7918          | 0.4796   | 0.3241         |
| 4.9768        | 7.69  | 100  | 4.5999          | 0.4796   | 0.3241         |
| 4.7137        | 8.46  | 110  | 4.3958          | 0.4796   | 0.3241         |
| 4.5863        | 9.23  | 120  | 4.1988          | 0.4796   | 0.3241         |
| 4.3386        | 10.0  | 130  | 3.9983          | 0.4796   | 0.3241         |
| 4.1936        | 10.77 | 140  | 3.7938          | 0.4796   | 0.3241         |
| 3.9752        | 11.54 | 150  | 3.5906          | 0.4796   | 0.3241         |
| 3.9035        | 12.31 | 160  | 3.3854          | 0.4796   | 0.3241         |
| 3.652         | 13.08 | 170  | 3.1907          | 0.4796   | 0.3241         |
| 3.3045        | 13.85 | 180  | 2.9781          | 0.4796   | 0.3241         |
| 3.135         | 14.62 | 190  | 2.7764          | 0.4796   | 0.3241         |
| 2.9589        | 15.38 | 200  | 2.5827          | 0.4796   | 0.3241         |
| 2.7405        | 16.15 | 210  | 2.3901          | 0.4796   | 0.3241         |
| 2.5482        | 16.92 | 220  | 2.2042          | 0.4796   | 0.3241         |
| 2.4126        | 17.69 | 230  | 2.0318          | 0.4796   | 0.3241         |
| 2.2721        | 18.46 | 240  | 1.8672          | 0.4796   | 0.3241         |
| 2.0507        | 19.23 | 250  | 1.7156          | 0.4796   | 0.3241         |
| 1.8895        | 20.0  | 260  | 1.5721          | 0.4796   | 0.3241         |
| 1.7304        | 20.77 | 270  | 1.4453          | 0.4796   | 0.3241         |
| 1.5756        | 21.54 | 280  | 1.3330          | 0.4796   | 0.3241         |
| 1.4961        | 22.31 | 290  | 1.2238          | 0.6594   | 0.6321         |
| 1.4065        | 23.08 | 300  | 1.1468          | 0.6621   | 0.6356         |
| 1.4168        | 23.85 | 310  | 1.0636          | 0.6839   | 0.6632         |
| 1.1788        | 24.62 | 320  | 0.9818          | 0.7411   | 0.7325         |
| 1.06          | 25.38 | 330  | 0.9203          | 0.7466   | 0.7438         |
| 1.0021        | 26.15 | 340  | 0.8806          | 0.7629   | 0.7629         |
| 1.0249        | 26.92 | 350  | 0.8698          | 0.6894   | 0.6690         |
| 0.8521        | 27.69 | 360  | 0.7970          | 0.7602   | 0.7562         |
| 0.8504        | 28.46 | 370  | 0.7724          | 0.7602   | 0.7602         |
| 0.7939        | 29.23 | 380  | 0.7440          | 0.7466   | 0.7461         |
| 0.7805        | 30.0  | 390  | 0.7283          | 0.7520   | 0.7511         |
| 0.6974        | 30.77 | 400  | 0.7311          | 0.7384   | 0.7377         |
| 0.7533        | 31.54 | 410  | 0.7270          | 0.7112   | 0.6979         |
| 0.7528        | 32.31 | 420  | 0.6796          | 0.7357   | 0.7298         |
| 0.6679        | 33.08 | 430  | 0.6834          | 0.7357   | 0.7357         |
| 0.6732        | 33.85 | 440  | 0.6851          | 0.7248   | 0.7248         |
| 0.6001        | 34.62 | 450  | 0.6585          | 0.7548   | 0.7530         |
| 0.6731        | 35.38 | 460  | 0.6727          | 0.7411   | 0.7380         |
| 0.5601        | 36.15 | 470  | 0.6688          | 0.7330   | 0.7321         |
| 0.5488        | 36.92 | 480  | 0.6879          | 0.7439   | 0.7420         |
| 0.5892        | 37.69 | 490  | 0.6809          | 0.7166   | 0.7148         |
| 0.5651        | 38.46 | 500  | 0.6877          | 0.7193   | 0.7181         |
| 0.5595        | 39.23 | 510  | 0.6874          | 0.7221   | 0.7218         |
| 0.4983        | 40.0  | 520  | 0.6789          | 0.7166   | 0.7166         |
| 0.4869        | 40.77 | 530  | 0.6912          | 0.7221   | 0.7221         |
| 0.5352        | 41.54 | 540  | 0.7038          | 0.7003   | 0.6984         |
| 0.444         | 42.31 | 550  | 0.6778          | 0.7330   | 0.7321         |
| 0.5637        | 43.08 | 560  | 0.6873          | 0.6975   | 0.6973         |
| 0.5065        | 43.85 | 570  | 0.6736          | 0.7411   | 0.7405         |
| 0.4921        | 44.62 | 580  | 0.6859          | 0.7384   | 0.7381         |
| 0.4426        | 45.38 | 590  | 0.6995          | 0.7221   | 0.7221         |
| 0.4679        | 46.15 | 600  | 0.6967          | 0.7275   | 0.7271         |
| 0.6099        | 46.92 | 610  | 0.7145          | 0.6948   | 0.6947         |
| 0.4779        | 47.69 | 620  | 0.7026          | 0.7139   | 0.7139         |
| 0.4743        | 48.46 | 630  | 0.7036          | 0.7139   | 0.7137         |
| 0.4687        | 49.23 | 640  | 0.7060          | 0.7112   | 0.7112         |
| 0.459         | 50.0  | 650  | 0.7070          | 0.7112   | 0.7112         |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3