File size: 6,727 Bytes
f714f65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
license: mit
base_model: Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vakyansh-wav2vec2-punjabi-pam-10-audio-abuse-feature
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vakyansh-wav2vec2-punjabi-pam-10-audio-abuse-feature
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7070
- Accuracy: 0.7112
- Macro F1-score: 0.7112
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|
| 6.7326 | 0.77 | 10 | 6.7224 | 0.0 | 0.0 |
| 6.682 | 1.54 | 20 | 6.5714 | 0.2888 | 0.0298 |
| 6.523 | 2.31 | 30 | 6.3268 | 0.4877 | 0.3619 |
| 6.247 | 3.08 | 40 | 6.0039 | 0.4768 | 0.3229 |
| 6.0644 | 3.85 | 50 | 5.7134 | 0.4796 | 0.3241 |
| 5.7866 | 4.62 | 60 | 5.4332 | 0.4796 | 0.3241 |
| 5.5229 | 5.38 | 70 | 5.2026 | 0.4796 | 0.3241 |
| 5.2712 | 6.15 | 80 | 4.9856 | 0.4796 | 0.3241 |
| 5.1268 | 6.92 | 90 | 4.7918 | 0.4796 | 0.3241 |
| 4.9768 | 7.69 | 100 | 4.5999 | 0.4796 | 0.3241 |
| 4.7137 | 8.46 | 110 | 4.3958 | 0.4796 | 0.3241 |
| 4.5863 | 9.23 | 120 | 4.1988 | 0.4796 | 0.3241 |
| 4.3386 | 10.0 | 130 | 3.9983 | 0.4796 | 0.3241 |
| 4.1936 | 10.77 | 140 | 3.7938 | 0.4796 | 0.3241 |
| 3.9752 | 11.54 | 150 | 3.5906 | 0.4796 | 0.3241 |
| 3.9035 | 12.31 | 160 | 3.3854 | 0.4796 | 0.3241 |
| 3.652 | 13.08 | 170 | 3.1907 | 0.4796 | 0.3241 |
| 3.3045 | 13.85 | 180 | 2.9781 | 0.4796 | 0.3241 |
| 3.135 | 14.62 | 190 | 2.7764 | 0.4796 | 0.3241 |
| 2.9589 | 15.38 | 200 | 2.5827 | 0.4796 | 0.3241 |
| 2.7405 | 16.15 | 210 | 2.3901 | 0.4796 | 0.3241 |
| 2.5482 | 16.92 | 220 | 2.2042 | 0.4796 | 0.3241 |
| 2.4126 | 17.69 | 230 | 2.0318 | 0.4796 | 0.3241 |
| 2.2721 | 18.46 | 240 | 1.8672 | 0.4796 | 0.3241 |
| 2.0507 | 19.23 | 250 | 1.7156 | 0.4796 | 0.3241 |
| 1.8895 | 20.0 | 260 | 1.5721 | 0.4796 | 0.3241 |
| 1.7304 | 20.77 | 270 | 1.4453 | 0.4796 | 0.3241 |
| 1.5756 | 21.54 | 280 | 1.3330 | 0.4796 | 0.3241 |
| 1.4961 | 22.31 | 290 | 1.2238 | 0.6594 | 0.6321 |
| 1.4065 | 23.08 | 300 | 1.1468 | 0.6621 | 0.6356 |
| 1.4168 | 23.85 | 310 | 1.0636 | 0.6839 | 0.6632 |
| 1.1788 | 24.62 | 320 | 0.9818 | 0.7411 | 0.7325 |
| 1.06 | 25.38 | 330 | 0.9203 | 0.7466 | 0.7438 |
| 1.0021 | 26.15 | 340 | 0.8806 | 0.7629 | 0.7629 |
| 1.0249 | 26.92 | 350 | 0.8698 | 0.6894 | 0.6690 |
| 0.8521 | 27.69 | 360 | 0.7970 | 0.7602 | 0.7562 |
| 0.8504 | 28.46 | 370 | 0.7724 | 0.7602 | 0.7602 |
| 0.7939 | 29.23 | 380 | 0.7440 | 0.7466 | 0.7461 |
| 0.7805 | 30.0 | 390 | 0.7283 | 0.7520 | 0.7511 |
| 0.6974 | 30.77 | 400 | 0.7311 | 0.7384 | 0.7377 |
| 0.7533 | 31.54 | 410 | 0.7270 | 0.7112 | 0.6979 |
| 0.7528 | 32.31 | 420 | 0.6796 | 0.7357 | 0.7298 |
| 0.6679 | 33.08 | 430 | 0.6834 | 0.7357 | 0.7357 |
| 0.6732 | 33.85 | 440 | 0.6851 | 0.7248 | 0.7248 |
| 0.6001 | 34.62 | 450 | 0.6585 | 0.7548 | 0.7530 |
| 0.6731 | 35.38 | 460 | 0.6727 | 0.7411 | 0.7380 |
| 0.5601 | 36.15 | 470 | 0.6688 | 0.7330 | 0.7321 |
| 0.5488 | 36.92 | 480 | 0.6879 | 0.7439 | 0.7420 |
| 0.5892 | 37.69 | 490 | 0.6809 | 0.7166 | 0.7148 |
| 0.5651 | 38.46 | 500 | 0.6877 | 0.7193 | 0.7181 |
| 0.5595 | 39.23 | 510 | 0.6874 | 0.7221 | 0.7218 |
| 0.4983 | 40.0 | 520 | 0.6789 | 0.7166 | 0.7166 |
| 0.4869 | 40.77 | 530 | 0.6912 | 0.7221 | 0.7221 |
| 0.5352 | 41.54 | 540 | 0.7038 | 0.7003 | 0.6984 |
| 0.444 | 42.31 | 550 | 0.6778 | 0.7330 | 0.7321 |
| 0.5637 | 43.08 | 560 | 0.6873 | 0.6975 | 0.6973 |
| 0.5065 | 43.85 | 570 | 0.6736 | 0.7411 | 0.7405 |
| 0.4921 | 44.62 | 580 | 0.6859 | 0.7384 | 0.7381 |
| 0.4426 | 45.38 | 590 | 0.6995 | 0.7221 | 0.7221 |
| 0.4679 | 46.15 | 600 | 0.6967 | 0.7275 | 0.7271 |
| 0.6099 | 46.92 | 610 | 0.7145 | 0.6948 | 0.6947 |
| 0.4779 | 47.69 | 620 | 0.7026 | 0.7139 | 0.7139 |
| 0.4743 | 48.46 | 630 | 0.7036 | 0.7139 | 0.7137 |
| 0.4687 | 49.23 | 640 | 0.7060 | 0.7112 | 0.7112 |
| 0.459 | 50.0 | 650 | 0.7070 | 0.7112 | 0.7112 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|