Unit 1 agent - Lunar Lander
Browse files- README.md +35 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 268.76 +/- 24.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b0c44e9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b0c44ea70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b0c44eb00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b0c44eb90>", "_build": "<function ActorCriticPolicy._build at 0x7f8b0c44ec20>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b0c44ecb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8b0c44ed40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b0c44edd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b0c44ee60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b0c44eef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b0c44ef80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b0c44f010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8b0c5eaf00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709648191842097354, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEXQgL6DTTQ/TI8CPgDEu74KcQa+guwQPQAAAAAAAAAAGk4ZvbRpzj7GU289dcR0vrk5jbyriGQ8AAAAAAAAAADmPHi9Hk3rPZfdKT7/wWK+puMVveVl0zwAAAAAAAAAAM1FHz6I/5Y/0jZLPgNe375mL3o+FixjPQAAAAAAAAAAmsBnPcPRVLpWpAM3iYiJMIjqirqr5Ri2AACAPwAAgD86MwY+0VNxP6MWvz03I7O+m5daPghoob0AAAAAAAAAAFNecT5RYQ69JWzjOlaIDLlHQny+FP08ugAAgD8AAIA/rVUEPoXw0D5rIS6+7CGqviGCWL25ray9AAAAAAAAAAAARL47E9ixPwrzOz7cw7C+WZuEuts2Dz0AAAAAAAAAAADqGb35KG4/pdnzvbAp5b7+20y8FUgKPQAAAAAAAAAA7VEwPv+gUT9GAAy95Rudvi+mEj6y7Yg8AAAAAAAAAABASri9rP0OP+kADz5u0qG+/mvSPC32w7wAAAAAAAAAAABATbvsOH0+3QSYPRFHgL7PJam8AvOMPQAAAAAAAAAA8wyoPdIJdD6OlLe98TCCvvCfWL2SCOC8AAAAAAAAAACAHx69SzcBPyiPHz0+g5++jHEZPNB7bbwAAAAAAAAAAACQZ7zEMVg+5zKRPbKgj765Imy89IVLuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEhiU1Q66uMAWyUS/uMAXSUR0Cb4LsySFGodX2UKGgGR0ByVfVpblijaAdNEAFoCEdAm+DO0b961XV9lChoBkdAcdIJ7b+LnGgHS/FoCEdAm+IONYKYzHV9lChoBkdAcMzh2nsLOWgHTQcBaAhHQJviuDmKZUl1fZQoaAZHQG5bONHYpUhoB00EAWgIR0Cb41Vmz0HydX2UKGgGR0Bw3R6eGwiaaAdL8mgIR0Cb43Cg9NeudX2UKGgGR0ByY2DWbwz+aAdNVgFoCEdAm+QhwIdELHV9lChoBkdAb2jSQYDT0GgHTQIBaAhHQJvkg5IYm9h1fZQoaAZHQHKLce8wpONoB00VAWgIR0Cb5P1QqI8AdX2UKGgGR0Bwk7Y02tMgaAdNCAFoCEdAm+Uc+u/1x3V9lChoBkdAcT7RdhRZU2gHTRsBaAhHQJvlVX6qKgt1fZQoaAZHQHIQhKL876poB007AWgIR0Cb5YkUsWfsdX2UKGgGR0Bx7c3eenQ6aAdNDAFoCEdAm+XyT6i0wHV9lChoBkdAcJFslLOAy2gHTQsBaAhHQJvm+SaEzwd1fZQoaAZHQHNJO3MINVloB00EAWgIR0Cb59drO7g9dX2UKGgGR0Buk9UXHim3aAdNQAFoCEdAm+frtmcvunV9lChoBkdAb114KQaJh2gHTQUBaAhHQJvn9DfFaSt1fZQoaAZHQHIrzn3cpLFoB00fAWgIR0Cb6KnvDxb0dX2UKGgGR0Buh2xt52QoaAdNHwFoCEdAm+n69kBjnXV9lChoBkdAcwrWAPNFB2gHS/BoCEdAm+n5udf9gnV9lChoBkdAcLnCJoCdSWgHTQsBaAhHQJvqEw22oeh1fZQoaAZHQHKMKU3XI2hoB00BAWgIR0Cb6xNj9XLedX2UKGgGR0Bvu4FFDv3KaAdNBQFoCEdAm+uPVRUFS3V9lChoBkdAcPeMcp9ZzWgHTTUBaAhHQJvr0La24NJ1fZQoaAZHQHFtPP5YYBNoB00EAWgIR0Cb7GCmdiDvdX2UKGgGR0Bw7OHJtBOYaAdNGQFoCEdAm+ylb/wRXnV9lChoBkdAcUSTrE9+w2gHTR0BaAhHQJvtVOoHcDd1fZQoaAZHQHBFFRP420loB003AWgIR0Cb7avHcUM5dX2UKGgGR0BwKw/LTx5LaAdNJgFoCEdAm+4dETg2qHV9lChoBkdAbVPVkMCtBGgHTQIBaAhHQJvuMWuX/o91fZQoaAZHQG5F+butwJhoB0v6aAhHQJvu3446wMZ1fZQoaAZHQDGlbUwztTloB0veaAhHQJvu5o371qZ1fZQoaAZHQHGefi5uqFRoB00RAWgIR0Cb72g6EJ0GdX2UKGgGR0Bwxei5/b0waAdNFwFoCEdAm++BMWXTmXV9lChoBkdAcbLXKKYRd2gHTQIBaAhHQJvw89FF2FF1fZQoaAZHQG7cbo8p1A9oB00XAWgIR0Cb8Yhw2l2vdX2UKGgGR0Bx5vlgc94eaAdNGQFoCEdAm/G1rhzeXXV9lChoBkdAbood6sySFGgHTQIBaAhHQJvyCw7kn1F1fZQoaAZHQHL2UCRwIdFoB0v5aAhHQJvyQELYwqR1fZQoaAZHQHA1BnWattBoB00VAWgIR0CcH1LRrrPddX2UKGgGR0Bw7hvNu+AVaAdNKgFoCEdAnCDS31BdEHV9lChoBkdAcHbY7JW/8GgHTTYBaAhHQJwg5w++ueV1fZQoaAZHQHLIOeSSvDBoB0v7aAhHQJwg/2saKk51fZQoaAZHQG7sa9K28ZloB00BAWgIR0CcIRS5RTCMdX2UKGgGR0Bw9Zo+OfdzaAdNHAFoCEdAnCFgHVwxWXV9lChoBkdAcggs052hZmgHTTEBaAhHQJwhp+ocaOx1fZQoaAZHQHLGxYNiH7BoB0v8aAhHQJwhwzqKP4p1fZQoaAZHQHG/BacI7eVoB0v2aAhHQJwiHXBguyx1fZQoaAZHQHJhOxnnMdNoB00VAWgIR0CcIv9n9NvgdX2UKGgGR0BxNHGcWj46aAdNNwFoCEdAnCM2iUPhAHV9lChoBkdARnT5XU6PsGgHS81oCEdAnCP4WLxZuHV9lChoBkdAcJl6oVEeAGgHTQABaAhHQJwkGfFrEcd1fZQoaAZHQHKkiMYMvytoB0v+aAhHQJwk8JJGvwF1fZQoaAZHQHLCwFkhA4ZoB00JAWgIR0CcJSgccU/OdX2UKGgGR0Bt+bRhMJyAaAdNPQFoCEdAnCfrULDyfHV9lChoBkdAcE6f4yoGZGgHTSMBaAhHQJwosOFxn4B1fZQoaAZHQHIgRsqJ/G5oB00LAWgIR0CcKfcUdq+KdX2UKGgGR0BwebsmfGuLaAdNDQFoCEdAnCn3NHH3lHV9lChoBkdAcblWu5jH42gHTQYBaAhHQJwqD/hl18t1fZQoaAZHQHLakiliz9loB00NAWgIR0CcKtV3ljmTdX2UKGgGR0Bydjva11GLaAdL72gIR0CcKtSW7e2vdX2UKGgGR0BvalZV4oqkaAdL/2gIR0CcKuXBxgiNdX2UKGgGR0BvvDkp7TlUaAdNIAFoCEdAnCsKWTot+XV9lChoBkdAb+zpcophF2gHTQwBaAhHQJwrPOJLuhN1fZQoaAZHQG/T5dGAkLRoB00HAWgIR0CcLNqQRwqBdX2UKGgGR0Bvo4HPeHi4aAdNAAFoCEdAnC2JCSidrnV9lChoBkdAcHQpEhJRO2gHTRsBaAhHQJwtlHOKO1h1fZQoaAZHQHGyHYQJ5VxoB00NAWgIR0CcLf6/qPfbdX2UKGgGR0BvsxVKf4ATaAdL+2gIR0CcLkYcvM8pdX2UKGgGR0Bw/sZNwiqyaAdNLAFoCEdAnC9iOmzjWHV9lChoBkdAcFFhStNi6WgHTRQBaAhHQJww4XhwVCZ1fZQoaAZHQFBFRl6JIlNoB0vhaAhHQJwxkVFhG6R1fZQoaAZHQHLroR7JGONoB00aAWgIR0CcMbD15B1LdX2UKGgGR0BvLLcO9WZJaAdNBAFoCEdAnDHzJp35e3V9lChoBkdAcn8KvFFUhmgHS/RoCEdAnDICTEBKc3V9lChoBkdAcwTcI7eVLWgHTRUBaAhHQJwyX7/GVA11fZQoaAZHQG+CSKvV3EBoB00bAWgIR0CcMoRhttQ9dX2UKGgGR0BzKx84PwuvaAdNIAFoCEdAnDN3YDklu3V9lChoBkdAcP6gJTl1bWgHTSsBaAhHQJwzh+mWMS91fZQoaAZHQHF0AuEmICVoB003AWgIR0CcM9PNVzZIdX2UKGgGR0Bv/rx/d69kaAdNDAFoCEdAnDQ36Q/5cnV9lChoBkdAcOZeC04R3GgHS/doCEdAnDRcNMGorHV9lChoBkdAb5dzNliBoWgHS/9oCEdAnDTxQrMC93V9lChoBkdAbsuJOWSlnGgHTRgBaAhHQJw1LmOlwcZ1fZQoaAZHQG23PDpC8e1oB00JAWgIR0CcNW8m8dxRdX2UKGgGR0BwqHb9If8uaAdNHAFoCEdAnDcHCKrJbXV9lChoBkdAcxwzyz5XVGgHS/toCEdAnDiq7ZnL73V9lChoBkdAcapDKYAsCmgHTR4BaAhHQJw4u9g4Otp1fZQoaAZHQGwvMdDIBBBoB00TAWgIR0CcOSxXnyNGdX2UKGgGR0Bt3/U2DQJHaAdNIwFoCEdAnDmJQLux8nV9lChoBkdAcdfNCJGe+WgHTRkBaAhHQJw6Eajvd/J1fZQoaAZHQHA/W3vx6OZoB00zAWgIR0CcOnFnqVyFdX2UKGgGR0BxC8tDlYEGaAdNIQFoCEdAnDp6HO8kEHV9lChoBkdAcU2xFRYRumgHTQUBaAhHQJw6wRChN/R1fZQoaAZHQHDdW912aDxoB00ZAWgIR0CcOz64UeuFdX2UKGgGR0ByG1WilBQfaAdNBAFoCEdAnDtuvt+kQHV9lChoBkdAcRKqaPS2IGgHTR4BaAhHQJw8YiGFi8Z1fZQoaAZHQHC2z0HyEtdoB00JAWgIR0CcPHprDZUUdX2UKGgGR0BxYD0nPVuraAdNCAFoCEdAnDy5+H8CP3V9lChoBkdAc4HuDjBEa2gHTSQBaAhHQJw9vq4YrJ91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9663cb8889069edf165aa34276ac1783c527a3ad94bb271eba58832ac8a152ab
|
3 |
+
size 148061
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b0c44e9e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b0c44ea70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b0c44eb00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b0c44eb90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8b0c44ec20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8b0c44ecb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8b0c44ed40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b0c44edd0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8b0c44ee60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b0c44eef0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b0c44ef80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b0c44f010>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8b0c5eaf00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1709648191842097354,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEXQgL6DTTQ/TI8CPgDEu74KcQa+guwQPQAAAAAAAAAAGk4ZvbRpzj7GU289dcR0vrk5jbyriGQ8AAAAAAAAAADmPHi9Hk3rPZfdKT7/wWK+puMVveVl0zwAAAAAAAAAAM1FHz6I/5Y/0jZLPgNe375mL3o+FixjPQAAAAAAAAAAmsBnPcPRVLpWpAM3iYiJMIjqirqr5Ri2AACAPwAAgD86MwY+0VNxP6MWvz03I7O+m5daPghoob0AAAAAAAAAAFNecT5RYQ69JWzjOlaIDLlHQny+FP08ugAAgD8AAIA/rVUEPoXw0D5rIS6+7CGqviGCWL25ray9AAAAAAAAAAAARL47E9ixPwrzOz7cw7C+WZuEuts2Dz0AAAAAAAAAAADqGb35KG4/pdnzvbAp5b7+20y8FUgKPQAAAAAAAAAA7VEwPv+gUT9GAAy95Rudvi+mEj6y7Yg8AAAAAAAAAABASri9rP0OP+kADz5u0qG+/mvSPC32w7wAAAAAAAAAAABATbvsOH0+3QSYPRFHgL7PJam8AvOMPQAAAAAAAAAA8wyoPdIJdD6OlLe98TCCvvCfWL2SCOC8AAAAAAAAAACAHx69SzcBPyiPHz0+g5++jHEZPNB7bbwAAAAAAAAAAACQZ7zEMVg+5zKRPbKgj765Imy89IVLuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEhiU1Q66uMAWyUS/uMAXSUR0Cb4LsySFGodX2UKGgGR0ByVfVpblijaAdNEAFoCEdAm+DO0b961XV9lChoBkdAcdIJ7b+LnGgHS/FoCEdAm+IONYKYzHV9lChoBkdAcMzh2nsLOWgHTQcBaAhHQJviuDmKZUl1fZQoaAZHQG5bONHYpUhoB00EAWgIR0Cb41Vmz0HydX2UKGgGR0Bw3R6eGwiaaAdL8mgIR0Cb43Cg9NeudX2UKGgGR0ByY2DWbwz+aAdNVgFoCEdAm+QhwIdELHV9lChoBkdAb2jSQYDT0GgHTQIBaAhHQJvkg5IYm9h1fZQoaAZHQHKLce8wpONoB00VAWgIR0Cb5P1QqI8AdX2UKGgGR0Bwk7Y02tMgaAdNCAFoCEdAm+Uc+u/1x3V9lChoBkdAcT7RdhRZU2gHTRsBaAhHQJvlVX6qKgt1fZQoaAZHQHIQhKL876poB007AWgIR0Cb5YkUsWfsdX2UKGgGR0Bx7c3eenQ6aAdNDAFoCEdAm+XyT6i0wHV9lChoBkdAcJFslLOAy2gHTQsBaAhHQJvm+SaEzwd1fZQoaAZHQHNJO3MINVloB00EAWgIR0Cb59drO7g9dX2UKGgGR0Buk9UXHim3aAdNQAFoCEdAm+frtmcvunV9lChoBkdAb114KQaJh2gHTQUBaAhHQJvn9DfFaSt1fZQoaAZHQHIrzn3cpLFoB00fAWgIR0Cb6KnvDxb0dX2UKGgGR0Buh2xt52QoaAdNHwFoCEdAm+n69kBjnXV9lChoBkdAcwrWAPNFB2gHS/BoCEdAm+n5udf9gnV9lChoBkdAcLnCJoCdSWgHTQsBaAhHQJvqEw22oeh1fZQoaAZHQHKMKU3XI2hoB00BAWgIR0Cb6xNj9XLedX2UKGgGR0Bvu4FFDv3KaAdNBQFoCEdAm+uPVRUFS3V9lChoBkdAcPeMcp9ZzWgHTTUBaAhHQJvr0La24NJ1fZQoaAZHQHFtPP5YYBNoB00EAWgIR0Cb7GCmdiDvdX2UKGgGR0Bw7OHJtBOYaAdNGQFoCEdAm+ylb/wRXnV9lChoBkdAcUSTrE9+w2gHTR0BaAhHQJvtVOoHcDd1fZQoaAZHQHBFFRP420loB003AWgIR0Cb7avHcUM5dX2UKGgGR0BwKw/LTx5LaAdNJgFoCEdAm+4dETg2qHV9lChoBkdAbVPVkMCtBGgHTQIBaAhHQJvuMWuX/o91fZQoaAZHQG5F+butwJhoB0v6aAhHQJvu3446wMZ1fZQoaAZHQDGlbUwztTloB0veaAhHQJvu5o371qZ1fZQoaAZHQHGefi5uqFRoB00RAWgIR0Cb72g6EJ0GdX2UKGgGR0Bwxei5/b0waAdNFwFoCEdAm++BMWXTmXV9lChoBkdAcbLXKKYRd2gHTQIBaAhHQJvw89FF2FF1fZQoaAZHQG7cbo8p1A9oB00XAWgIR0Cb8Yhw2l2vdX2UKGgGR0Bx5vlgc94eaAdNGQFoCEdAm/G1rhzeXXV9lChoBkdAbood6sySFGgHTQIBaAhHQJvyCw7kn1F1fZQoaAZHQHL2UCRwIdFoB0v5aAhHQJvyQELYwqR1fZQoaAZHQHA1BnWattBoB00VAWgIR0CcH1LRrrPddX2UKGgGR0Bw7hvNu+AVaAdNKgFoCEdAnCDS31BdEHV9lChoBkdAcHbY7JW/8GgHTTYBaAhHQJwg5w++ueV1fZQoaAZHQHLIOeSSvDBoB0v7aAhHQJwg/2saKk51fZQoaAZHQG7sa9K28ZloB00BAWgIR0CcIRS5RTCMdX2UKGgGR0Bw9Zo+OfdzaAdNHAFoCEdAnCFgHVwxWXV9lChoBkdAcggs052hZmgHTTEBaAhHQJwhp+ocaOx1fZQoaAZHQHLGxYNiH7BoB0v8aAhHQJwhwzqKP4p1fZQoaAZHQHG/BacI7eVoB0v2aAhHQJwiHXBguyx1fZQoaAZHQHJhOxnnMdNoB00VAWgIR0CcIv9n9NvgdX2UKGgGR0BxNHGcWj46aAdNNwFoCEdAnCM2iUPhAHV9lChoBkdARnT5XU6PsGgHS81oCEdAnCP4WLxZuHV9lChoBkdAcJl6oVEeAGgHTQABaAhHQJwkGfFrEcd1fZQoaAZHQHKkiMYMvytoB0v+aAhHQJwk8JJGvwF1fZQoaAZHQHLCwFkhA4ZoB00JAWgIR0CcJSgccU/OdX2UKGgGR0Bt+bRhMJyAaAdNPQFoCEdAnCfrULDyfHV9lChoBkdAcE6f4yoGZGgHTSMBaAhHQJwosOFxn4B1fZQoaAZHQHIgRsqJ/G5oB00LAWgIR0CcKfcUdq+KdX2UKGgGR0BwebsmfGuLaAdNDQFoCEdAnCn3NHH3lHV9lChoBkdAcblWu5jH42gHTQYBaAhHQJwqD/hl18t1fZQoaAZHQHLakiliz9loB00NAWgIR0CcKtV3ljmTdX2UKGgGR0Bydjva11GLaAdL72gIR0CcKtSW7e2vdX2UKGgGR0BvalZV4oqkaAdL/2gIR0CcKuXBxgiNdX2UKGgGR0BvvDkp7TlUaAdNIAFoCEdAnCsKWTot+XV9lChoBkdAb+zpcophF2gHTQwBaAhHQJwrPOJLuhN1fZQoaAZHQG/T5dGAkLRoB00HAWgIR0CcLNqQRwqBdX2UKGgGR0Bvo4HPeHi4aAdNAAFoCEdAnC2JCSidrnV9lChoBkdAcHQpEhJRO2gHTRsBaAhHQJwtlHOKO1h1fZQoaAZHQHGyHYQJ5VxoB00NAWgIR0CcLf6/qPfbdX2UKGgGR0BvsxVKf4ATaAdL+2gIR0CcLkYcvM8pdX2UKGgGR0Bw/sZNwiqyaAdNLAFoCEdAnC9iOmzjWHV9lChoBkdAcFFhStNi6WgHTRQBaAhHQJww4XhwVCZ1fZQoaAZHQFBFRl6JIlNoB0vhaAhHQJwxkVFhG6R1fZQoaAZHQHLroR7JGONoB00aAWgIR0CcMbD15B1LdX2UKGgGR0BvLLcO9WZJaAdNBAFoCEdAnDHzJp35e3V9lChoBkdAcn8KvFFUhmgHS/RoCEdAnDICTEBKc3V9lChoBkdAcwTcI7eVLWgHTRUBaAhHQJwyX7/GVA11fZQoaAZHQG+CSKvV3EBoB00bAWgIR0CcMoRhttQ9dX2UKGgGR0BzKx84PwuvaAdNIAFoCEdAnDN3YDklu3V9lChoBkdAcP6gJTl1bWgHTSsBaAhHQJwzh+mWMS91fZQoaAZHQHF0AuEmICVoB003AWgIR0CcM9PNVzZIdX2UKGgGR0Bv/rx/d69kaAdNDAFoCEdAnDQ36Q/5cnV9lChoBkdAcOZeC04R3GgHS/doCEdAnDRcNMGorHV9lChoBkdAb5dzNliBoWgHS/9oCEdAnDTxQrMC93V9lChoBkdAbsuJOWSlnGgHTRgBaAhHQJw1LmOlwcZ1fZQoaAZHQG23PDpC8e1oB00JAWgIR0CcNW8m8dxRdX2UKGgGR0BwqHb9If8uaAdNHAFoCEdAnDcHCKrJbXV9lChoBkdAcxwzyz5XVGgHS/toCEdAnDiq7ZnL73V9lChoBkdAcapDKYAsCmgHTR4BaAhHQJw4u9g4Otp1fZQoaAZHQGwvMdDIBBBoB00TAWgIR0CcOSxXnyNGdX2UKGgGR0Bt3/U2DQJHaAdNIwFoCEdAnDmJQLux8nV9lChoBkdAcdfNCJGe+WgHTRkBaAhHQJw6Eajvd/J1fZQoaAZHQHA/W3vx6OZoB00zAWgIR0CcOnFnqVyFdX2UKGgGR0BxC8tDlYEGaAdNIQFoCEdAnDp6HO8kEHV9lChoBkdAcU2xFRYRumgHTQUBaAhHQJw6wRChN/R1fZQoaAZHQHDdW912aDxoB00ZAWgIR0CcOz64UeuFdX2UKGgGR0ByG1WilBQfaAdNBAFoCEdAnDtuvt+kQHV9lChoBkdAcRKqaPS2IGgHTR4BaAhHQJw8YiGFi8Z1fZQoaAZHQHC2z0HyEtdoB00JAWgIR0CcPHprDZUUdX2UKGgGR0BxYD0nPVuraAdNCAFoCEdAnDy5+H8CP3V9lChoBkdAc4HuDjBEa2gHTSQBaAhHQJw9vq4YrJ91ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 620,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05a514d0de8b690e466eea101c9b37703727a38658d59a21b52155477e46b2cc
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bf1fd47d1c268c009e5640e38a8b513165e78c40ffdab4b07d18ae357819905
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (165 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 268.75614809999996, "std_reward": 24.153574469743184, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-05T14:58:54.946622"}
|