Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/cahya/roberta-base-indonesian-522M/README.md
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "id"
|
3 |
+
license: "mit"
|
4 |
+
datasets:
|
5 |
+
- Indonesian Wikipedia
|
6 |
+
widget:
|
7 |
+
- text: "Ibu ku sedang bekerja <mask> supermarket."
|
8 |
+
---
|
9 |
+
|
10 |
+
# Indonesian RoBERTa base model (uncased)
|
11 |
+
|
12 |
+
## Model description
|
13 |
+
It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This
|
14 |
+
model is uncased: it does not make a difference between indonesia and Indonesia.
|
15 |
+
|
16 |
+
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
|
17 |
+
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
|
18 |
+
|
19 |
+
## Intended uses & limitations
|
20 |
+
|
21 |
+
### How to use
|
22 |
+
You can use this model directly with a pipeline for masked language modeling:
|
23 |
+
```python
|
24 |
+
>>> from transformers import pipeline
|
25 |
+
>>> unmasker = pipeline('fill-mask', model='cahya/roberta-base-indonesian-522M')
|
26 |
+
>>> unmasker("Ibu ku sedang bekerja <mask> supermarket")
|
27 |
+
|
28 |
+
```
|
29 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
30 |
+
```python
|
31 |
+
from transformers import RobertaTokenizer, RobertaModel
|
32 |
+
|
33 |
+
model_name='cahya/roberta-base-indonesian-522M'
|
34 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
35 |
+
model = RobertaModel.from_pretrained(model_name)
|
36 |
+
text = "Silakan diganti dengan text apa saja."
|
37 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
38 |
+
output = model(**encoded_input)
|
39 |
+
```
|
40 |
+
and in Tensorflow:
|
41 |
+
```python
|
42 |
+
from transformers import RobertaTokenizer, TFRobertaModel
|
43 |
+
|
44 |
+
model_name='cahya/roberta-base-indonesian-522M'
|
45 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
46 |
+
model = TFRobertaModel.from_pretrained(model_name)
|
47 |
+
text = "Silakan diganti dengan text apa saja."
|
48 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
49 |
+
output = model(encoded_input)
|
50 |
+
```
|
51 |
+
|
52 |
+
## Training data
|
53 |
+
|
54 |
+
This model was pre-trained with 522MB of indonesian Wikipedia.
|
55 |
+
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are
|
56 |
+
then of the form:
|
57 |
+
|
58 |
+
```<s> Sentence A </s> Sentence B </s>```
|