cahya commited on
Commit
e4b6599
·
verified ·
1 Parent(s): a8e3ba6

Training complete

Browse files
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: cahya/NusaBert-v0.5
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: NusaBert-ner
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: validation
24
+ args: conll2003
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8695088344950559
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9027263547627061
32
+ - name: F1
33
+ type: f1
34
+ value: 0.885806291800842
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9798333197726454
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # NusaBert-ner
44
+
45
+ This model is a fine-tuned version of [cahya/NusaBert-v0.5](https://huggingface.co/cahya/NusaBert-v0.5) on the conll2003 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1065
48
+ - Precision: 0.8695
49
+ - Recall: 0.9027
50
+ - F1: 0.8858
51
+ - Accuracy: 0.9798
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0988 | 1.0 | 1756 | 0.0918 | 0.8335 | 0.8701 | 0.8514 | 0.9732 |
83
+ | 0.0313 | 2.0 | 3512 | 0.0973 | 0.8639 | 0.8950 | 0.8792 | 0.9778 |
84
+ | 0.0083 | 3.0 | 5268 | 0.1065 | 0.8695 | 0.9027 | 0.8858 | 0.9798 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.48.2
90
+ - Pytorch 2.5.1+cu124
91
+ - Datasets 3.2.0
92
+ - Tokenizers 0.21.0
runs/Feb13_22-15-27_a18b65db8ae1/events.out.tfevents.1739484946.a18b65db8ae1.563.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:809aed6782159f205fd505438f98a6c1d43e758e9f1cd8a53df9368d364b9a3f
3
- size 9001
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:075afebd74e484850c1ccc7136b3166aa4d3ab80a8cf13178b7ae96469dba1ef
3
+ size 9827