File size: 2,642 Bytes
16d5e29 8367b86 16d5e29 3a0de81 16d5e29 d65c036 16d5e29 41508db 16d5e29 8367b86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
library_name: transformers
base_model: cahya/NusaBert-v1.3
tags:
- generated_from_trainer
datasets:
- grit-id/id_nergrit_corpus
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: nusabert_nergrit_1.3
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: grit-id/id_nergrit_corpus ner
type: grit-id/id_nergrit_corpus
config: ner
split: validation
args: ner
metrics:
- name: Precision
type: precision
value: 0.8010483135824977
- name: Recall
type: recall
value: 0.8338275412169375
- name: F1
type: f1
value: 0.8171093159760562
- name: Accuracy
type: accuracy
value: 0.9476653696498054
pipeline_tag: token-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NusaBert-ner-v1.3
This model is a fine-tuned version of [cahya/NusaBert-v1.3](https://huggingface.co/cahya/NusaBert-v1.3) on the grit-id/id_nergrit_corpus ner dataset.
It supports a context length of 8192, the same as the model *cahya/NusaBert-v1.3* which was pre-trained from scratch using ModernBERT architecture.
It achieves the following results on the evaluation set:
- Loss: 0.2174
- Precision: 0.8010
- Recall: 0.8338
- F1: 0.8171
- Accuracy: 0.9477
## Model description
The dataset contains 19 following entities
```
'CRD': Cardinal
'DAT': Date
'EVT': Event
'FAC': Facility
'GPE': Geopolitical Entity
'LAW': Law Entity (such as Undang-Undang)
'LOC': Location
'MON': Money
'NOR': Political Organization
'ORD': Ordinal
'ORG': Organization
'PER': Person
'PRC': Percent
'PRD': Product
'QTY': Quantity
'REG': Religion
'TIM': Time
'WOA': Work of Art
'LAN': Language
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 2.19.2
- Tokenizers 0.21.0 |