Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.70 +/- 0.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3758a34a45d70be540f3040dc80e69b7cb96d3dfc508e6beefb4296579a8967
|
3 |
+
size 108098
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1861b91d30>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f1861b923c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1680631016966950019,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAIK9PmAx3Lw9bQw/AIK9PmAx3Lw9bQw/AIK9PmAx3Lw9bQw/AIK9PmAx3Lw9bQw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHCW0v80MuTyEqLO/IRkcPxn8zb4lENM9dzzRPwizvT+jYM8//5+PPzb/rT8go6M/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjsAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjsAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjsAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.37013245 -0.02687901 0.54854184]\n [ 0.37013245 -0.02687901 0.54854184]\n [ 0.37013245 -0.02687901 0.54854184]\n [ 0.37013245 -0.02687901 0.54854184]]",
|
60 |
+
"desired_goal": "[[-1.4073825 0.02258911 -1.4035802 ]\n [ 0.60975844 -0.40231398 0.10305814]\n [ 1.6346577 1.4820261 1.6201366 ]\n [ 1.1220702 1.3593509 1.2784157 ]]",
|
61 |
+
"observation": "[[ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]\n [ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]\n [ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]\n [ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO8zevSUAgL2sdAI+h4GdvFkY9T0Ukls+T1+HvMAIy7yJBmw9thh4PUCLFL3gsFQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.10878798 -0.06250028 0.1273982 ]\n [-0.0192268 0.11967535 0.21442443]\n [-0.01652494 -0.02478445 0.05762342]\n [ 0.06057044 -0.03626561 0.20770597]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWKzhIvd08b+UhpRSlIwBbJRLMowBdJRHQJlRxIH1OCZ1fZQoaAZoCWgPQwjxDvCkhYv4v5SGlFKUaBVLMmgWR0CZUXbH6uW9dX2UKGgGaAloD0MIwhTl0vgF57+UhpRSlGgVSzJoFkdAmVEqQzUI9nV9lChoBmgJaA9DCAZ/v5gtWde/lIaUUpRoFUsyaBZHQJlQ32f02+B1fZQoaAZoCWgPQwjdeHdkrLbrv5SGlFKUaBVLMmgWR0CZUyZQYUFjdX2UKGgGaAloD0MIiITv/Q1a6b+UhpRSlGgVSzJoFkdAmVLYqCpWFXV9lChoBmgJaA9DCFr1udqK/e6/lIaUUpRoFUsyaBZHQJlSjBAOav11fZQoaAZoCWgPQwhR9wFIbSLxv5SGlFKUaBVLMmgWR0CZUkEl3QlbdX2UKGgGaAloD0MIZHRAEvZt9b+UhpRSlGgVSzJoFkdAmVSEVnEl3XV9lChoBmgJaA9DCJoK8Ui8/PC/lIaUUpRoFUsyaBZHQJlUNrgwXZZ1fZQoaAZoCWgPQwhe9YB5yBTyv5SGlFKUaBVLMmgWR0CZU+ornTy8dX2UKGgGaAloD0MIJjrLLEJx8r+UhpRSlGgVSzJoFkdAmVOfS2H+InV9lChoBmgJaA9DCOF9VS5U/uC/lIaUUpRoFUsyaBZHQJlV5lwtJ4B1fZQoaAZoCWgPQwhky/J1Gf7+v5SGlFKUaBVLMmgWR0CZVZiwjdHldX2UKGgGaAloD0MICrq9pDHa87+UhpRSlGgVSzJoFkdAmVVMFY+0PnV9lChoBmgJaA9DCKjknNhD++K/lIaUUpRoFUsyaBZHQJlVAT8HfMx1fZQoaAZoCWgPQwiWBRN/FPXmv5SGlFKUaBVLMmgWR0CZV1d6sySFdX2UKGgGaAloD0MIv9cQHJdx47+UhpRSlGgVSzJoFkdAmVcJ0Syt3nV9lChoBmgJaA9DCExxVdl3BfK/lIaUUpRoFUsyaBZHQJlWvim2sq91fZQoaAZoCWgPQwgucHmsGRnkv5SGlFKUaBVLMmgWR0CZVnNTcZccdX2UKGgGaAloD0MI/Z/DfHkB7L+UhpRSlGgVSzJoFkdAmVi5aRp1zXV9lChoBmgJaA9DCAq9/iQ+d++/lIaUUpRoFUsyaBZHQJlYa8e0Xxh1fZQoaAZoCWgPQwjohxHCo43tv5SGlFKUaBVLMmgWR0CZWB9DhLoPdX2UKGgGaAloD0MI/te5aTNO87+UhpRSlGgVSzJoFkdAmVfUaAFxGXV9lChoBmgJaA9DCM4bJ4V5T/C/lIaUUpRoFUsyaBZHQJlaFZX+2mZ1fZQoaAZoCWgPQwhVGFsIclDsv5SGlFKUaBVLMmgWR0CZWcf2bobGdX2UKGgGaAloD0MI1PGYgcq49L+UhpRSlGgVSzJoFkdAmVl7VnVXm3V9lChoBmgJaA9DCFx1HaopSfG/lIaUUpRoFUsyaBZHQJlZMHD76551fZQoaAZoCWgPQwgbKsb5m9Drv5SGlFKUaBVLMmgWR0CZW2+TeO4odX2UKGgGaAloD0MIED6UaMnj3b+UhpRSlGgVSzJoFkdAmVsh5TqB3HV9lChoBmgJaA9DCCTRyyiWm/C/lIaUUpRoFUsyaBZHQJla1VGTcIt1fZQoaAZoCWgPQwhQw7ewbrzuv5SGlFKUaBVLMmgWR0CZWoppeu3ddX2UKGgGaAloD0MIJO8cylCV47+UhpRSlGgVSzJoFkdAmVzO+mFajnV9lChoBmgJaA9DCLTlXIqrSum/lIaUUpRoFUsyaBZHQJlcgUbkwN91fZQoaAZoCWgPQwhP54pSQjDhv5SGlFKUaBVLMmgWR0CZXDS4vvjPdX2UKGgGaAloD0MICAH5Eiq477+UhpRSlGgVSzJoFkdAmVvp40Mw13V9lChoBmgJaA9DCGLAkqtY/OS/lIaUUpRoFUsyaBZHQJleTmcOLBN1fZQoaAZoCWgPQwgTRN0HIPX7v5SGlFKUaBVLMmgWR0CZXgGB4D9wdX2UKGgGaAloD0MI0TyARX796L+UhpRSlGgVSzJoFkdAmV20+kgwGnV9lChoBmgJaA9DCE1qaAOwgeK/lIaUUpRoFUsyaBZHQJldah11W811fZQoaAZoCWgPQwgCSkONQlL1v5SGlFKUaBVLMmgWR0CZX6oPCl7/dX2UKGgGaAloD0MIcv4mFCIg9b+UhpRSlGgVSzJoFkdAmV9ccIZ62XV9lChoBmgJaA9DCAH6ff/mhfa/lIaUUpRoFUsyaBZHQJlfD99+gDl1fZQoaAZoCWgPQwgPK9zykVTyv5SGlFKUaBVLMmgWR0CZXsT7l7tzdX2UKGgGaAloD0MIpdk8DoM59r+UhpRSlGgVSzJoFkdAmWEFzp5eJHV9lChoBmgJaA9DCH/6z5of//K/lIaUUpRoFUsyaBZHQJlguBqbjLl1fZQoaAZoCWgPQwg17WKa6V7uv5SGlFKUaBVLMmgWR0CZYGuSwGGEdX2UKGgGaAloD0MIxVOPNLgt47+UhpRSlGgVSzJoFkdAmWAgvDgqE3V9lChoBmgJaA9DCED2evfHe9e/lIaUUpRoFUsyaBZHQJliZyZKFqV1fZQoaAZoCWgPQwh3E3zT9Fnhv5SGlFKUaBVLMmgWR0CZYhmE4//vdX2UKGgGaAloD0MIj6omiLqP47+UhpRSlGgVSzJoFkdAmWHM8kleGHV9lChoBmgJaA9DCHobmx2pfvO/lIaUUpRoFUsyaBZHQJlhgglnh891fZQoaAZoCWgPQwh5AfbRqWvxv5SGlFKUaBVLMmgWR0CZY8Gt6ol2dX2UKGgGaAloD0MIdVsiF5zB37+UhpRSlGgVSzJoFkdAmWN0BjnV5XV9lChoBmgJaA9DCGn9LQH4p92/lIaUUpRoFUsyaBZHQJljJ2eQMhJ1fZQoaAZoCWgPQwigbwuW6kL2v5SGlFKUaBVLMmgWR0CZYtyUs4DLdX2UKGgGaAloD0MIP5EnSddM4L+UhpRSlGgVSzJoFkdAmWUas+3YtnV9lChoBmgJaA9DCNujN9xHLva/lIaUUpRoFUsyaBZHQJlkzRgJC0F1fZQoaAZoCWgPQwjE6SRbXU71v5SGlFKUaBVLMmgWR0CZZIBomG/OdX2UKGgGaAloD0MIVfoJZ7dW8L+UhpRSlGgVSzJoFkdAmWQ1fE4vOHV9lChoBmgJaA9DCBQi4BCq1Oy/lIaUUpRoFUsyaBZHQJlmfG5tm+V1fZQoaAZoCWgPQwiY3Ciy1lD1v5SGlFKUaBVLMmgWR0CZZi7NjbztdX2UKGgGaAloD0MIJ9h/nZt29r+UhpRSlGgVSzJoFkdAmWXiPluFYnV9lChoBmgJaA9DCAZHyatzjOi/lIaUUpRoFUsyaBZHQJlll13dKul1fZQoaAZoCWgPQwjfUPhsHRzgv5SGlFKUaBVLMmgWR0CZZ946Oo5xdX2UKGgGaAloD0MISL99HThn3b+UhpRSlGgVSzJoFkdAmWeQoCuEEnV9lChoBmgJaA9DCP0QGyyc5PC/lIaUUpRoFUsyaBZHQJlnRBRhttR1fZQoaAZoCWgPQwgudvusMhP2v5SGlFKUaBVLMmgWR0CZZvkfLcKxdX2UKGgGaAloD0MIVmZK628J3r+UhpRSlGgVSzJoFkdAmWk/ECNjsnV9lChoBmgJaA9DCCBe1y/YDdq/lIaUUpRoFUsyaBZHQJlo8UDdP+J1fZQoaAZoCWgPQwgIsMivH+Lqv5SGlFKUaBVLMmgWR0CZaKSpBHCodX2UKGgGaAloD0MIIlD9g0iG3r+UhpRSlGgVSzJoFkdAmWhZ2hZha3V9lChoBmgJaA9DCPqcu10vzea/lIaUUpRoFUsyaBZHQJlqlB9kSVZ1fZQoaAZoCWgPQwifPZepSTD6v5SGlFKUaBVLMmgWR0CZakYqG1x9dX2UKGgGaAloD0MIEFt6NNUT87+UhpRSlGgVSzJoFkdAmWn5mqYJFHV9lChoBmgJaA9DCOvHJvkRv9a/lIaUUpRoFUsyaBZHQJlprtIClrN1fZQoaAZoCWgPQwgxKNNocrHzv5SGlFKUaBVLMmgWR0CZa/ELYwqRdX2UKGgGaAloD0MIKerMPSR81r+UhpRSlGgVSzJoFkdAmWujiGWUr3V9lChoBmgJaA9DCNkHWRZMfOu/lIaUUpRoFUsyaBZHQJlrVuUD+zd1fZQoaAZoCWgPQwiEnziAfl/0v5SGlFKUaBVLMmgWR0CZawv73wkPdX2UKGgGaAloD0MIKxN+qZ833L+UhpRSlGgVSzJoFkdAmW1OtnwocHV9lChoBmgJaA9DCLrdy31yFOG/lIaUUpRoFUsyaBZHQJltASM98qp1fZQoaAZoCWgPQwgZr3lVZ7Xvv5SGlFKUaBVLMmgWR0CZbLSX+l0pdX2UKGgGaAloD0MIz7uxoDCo5r+UhpRSlGgVSzJoFkdAmWxpz1bqyHV9lChoBmgJaA9DCC7KbJBJBvK/lIaUUpRoFUsyaBZHQJlurIJZ4fR1fZQoaAZoCWgPQwj8qlyo/Gvmv5SGlFKUaBVLMmgWR0CZbl7Lt/nXdX2UKGgGaAloD0MIG7tE9dZA6r+UhpRSlGgVSzJoFkdAmW4SOearm3V9lChoBmgJaA9DCIS4cvbOaOK/lIaUUpRoFUsyaBZHQJltx10T1011fZQoaAZoCWgPQwh2cLA3MWTzv5SGlFKUaBVLMmgWR0CZcCgsK9f1dX2UKGgGaAloD0MI9MMI4dHG5L+UhpRSlGgVSzJoFkdAmW/ajafzz3V9lChoBmgJaA9DCKa0/pYAfPG/lIaUUpRoFUsyaBZHQJlvjfoA4n51fZQoaAZoCWgPQwjK+s3EdCHXv5SGlFKUaBVLMmgWR0CZb0MKTjebdX2UKGgGaAloD0MIWcSww5h05b+UhpRSlGgVSzJoFkdAmXGhx1gYxnV9lChoBmgJaA9DCHwPlxx3SuG/lIaUUpRoFUsyaBZHQJlxVCHARCh1fZQoaAZoCWgPQwjhtUsbDgvxv5SGlFKUaBVLMmgWR0CZcQd2gWaddX2UKGgGaAloD0MIFFysqMF08b+UhpRSlGgVSzJoFkdAmXC9fCyhSXV9lChoBmgJaA9DCAA49uy5zPa/lIaUUpRoFUsyaBZHQJlzAkzGgjB1fZQoaAZoCWgPQwj+RdCYSdTbv5SGlFKUaBVLMmgWR0CZcrSfDk2hdX2UKGgGaAloD0MIgEkqU8xB9b+UhpRSlGgVSzJoFkdAmXJoFA3T/nV9lChoBmgJaA9DCIuJzce1IeW/lIaUUpRoFUsyaBZHQJlyHUd7v5R1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da1c30ced4e45e54c469dcea1a91f02af05165c3618e6e3b6cf4cf23a475179b
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b3011ddbb389b39d981683e1ca5308d6b42b548d5ab827a30a0161312699581
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022
|
2 |
+
- Python: 3.8.12
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1861b91d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1861b923c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680631016966950019, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL2phc29uL21pbmljb25kYTMvZW52cy9ybC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvamFzb24vbWluaWNvbmRhMy9lbnZzL3JsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAAIK9PmAx3Lw9bQw/AIK9PmAx3Lw9bQw/AIK9PmAx3Lw9bQw/AIK9PmAx3Lw9bQw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHCW0v80MuTyEqLO/IRkcPxn8zb4lENM9dzzRPwizvT+jYM8//5+PPzb/rT8go6M/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjsAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjsAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjsAgr0+YDHcvD1tDD9bfCU8mXgIu+GGOjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37013245 -0.02687901 0.54854184]\n [ 0.37013245 -0.02687901 0.54854184]\n [ 0.37013245 -0.02687901 0.54854184]\n [ 0.37013245 -0.02687901 0.54854184]]", "desired_goal": "[[-1.4073825 0.02258911 -1.4035802 ]\n [ 0.60975844 -0.40231398 0.10305814]\n [ 1.6346577 1.4820261 1.6201366 ]\n [ 1.1220702 1.3593509 1.2784157 ]]", "observation": "[[ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]\n [ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]\n [ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]\n [ 0.37013245 -0.02687901 0.54854184 0.01010045 -0.00208238 0.00284617]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO8zevSUAgL2sdAI+h4GdvFkY9T0Ukls+T1+HvMAIy7yJBmw9thh4PUCLFL3gsFQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10878798 -0.06250028 0.1273982 ]\n [-0.0192268 0.11967535 0.21442443]\n [-0.01652494 -0.02478445 0.05762342]\n [ 0.06057044 -0.03626561 0.20770597]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWKzhIvd08b+UhpRSlIwBbJRLMowBdJRHQJlRxIH1OCZ1fZQoaAZoCWgPQwjxDvCkhYv4v5SGlFKUaBVLMmgWR0CZUXbH6uW9dX2UKGgGaAloD0MIwhTl0vgF57+UhpRSlGgVSzJoFkdAmVEqQzUI9nV9lChoBmgJaA9DCAZ/v5gtWde/lIaUUpRoFUsyaBZHQJlQ32f02+B1fZQoaAZoCWgPQwjdeHdkrLbrv5SGlFKUaBVLMmgWR0CZUyZQYUFjdX2UKGgGaAloD0MIiITv/Q1a6b+UhpRSlGgVSzJoFkdAmVLYqCpWFXV9lChoBmgJaA9DCFr1udqK/e6/lIaUUpRoFUsyaBZHQJlSjBAOav11fZQoaAZoCWgPQwhR9wFIbSLxv5SGlFKUaBVLMmgWR0CZUkEl3QlbdX2UKGgGaAloD0MIZHRAEvZt9b+UhpRSlGgVSzJoFkdAmVSEVnEl3XV9lChoBmgJaA9DCJoK8Ui8/PC/lIaUUpRoFUsyaBZHQJlUNrgwXZZ1fZQoaAZoCWgPQwhe9YB5yBTyv5SGlFKUaBVLMmgWR0CZU+ornTy8dX2UKGgGaAloD0MIJjrLLEJx8r+UhpRSlGgVSzJoFkdAmVOfS2H+InV9lChoBmgJaA9DCOF9VS5U/uC/lIaUUpRoFUsyaBZHQJlV5lwtJ4B1fZQoaAZoCWgPQwhky/J1Gf7+v5SGlFKUaBVLMmgWR0CZVZiwjdHldX2UKGgGaAloD0MICrq9pDHa87+UhpRSlGgVSzJoFkdAmVVMFY+0PnV9lChoBmgJaA9DCKjknNhD++K/lIaUUpRoFUsyaBZHQJlVAT8HfMx1fZQoaAZoCWgPQwiWBRN/FPXmv5SGlFKUaBVLMmgWR0CZV1d6sySFdX2UKGgGaAloD0MIv9cQHJdx47+UhpRSlGgVSzJoFkdAmVcJ0Syt3nV9lChoBmgJaA9DCExxVdl3BfK/lIaUUpRoFUsyaBZHQJlWvim2sq91fZQoaAZoCWgPQwgucHmsGRnkv5SGlFKUaBVLMmgWR0CZVnNTcZccdX2UKGgGaAloD0MI/Z/DfHkB7L+UhpRSlGgVSzJoFkdAmVi5aRp1zXV9lChoBmgJaA9DCAq9/iQ+d++/lIaUUpRoFUsyaBZHQJlYa8e0Xxh1fZQoaAZoCWgPQwjohxHCo43tv5SGlFKUaBVLMmgWR0CZWB9DhLoPdX2UKGgGaAloD0MI/te5aTNO87+UhpRSlGgVSzJoFkdAmVfUaAFxGXV9lChoBmgJaA9DCM4bJ4V5T/C/lIaUUpRoFUsyaBZHQJlaFZX+2mZ1fZQoaAZoCWgPQwhVGFsIclDsv5SGlFKUaBVLMmgWR0CZWcf2bobGdX2UKGgGaAloD0MI1PGYgcq49L+UhpRSlGgVSzJoFkdAmVl7VnVXm3V9lChoBmgJaA9DCFx1HaopSfG/lIaUUpRoFUsyaBZHQJlZMHD76551fZQoaAZoCWgPQwgbKsb5m9Drv5SGlFKUaBVLMmgWR0CZW2+TeO4odX2UKGgGaAloD0MIED6UaMnj3b+UhpRSlGgVSzJoFkdAmVsh5TqB3HV9lChoBmgJaA9DCCTRyyiWm/C/lIaUUpRoFUsyaBZHQJla1VGTcIt1fZQoaAZoCWgPQwhQw7ewbrzuv5SGlFKUaBVLMmgWR0CZWoppeu3ddX2UKGgGaAloD0MIJO8cylCV47+UhpRSlGgVSzJoFkdAmVzO+mFajnV9lChoBmgJaA9DCLTlXIqrSum/lIaUUpRoFUsyaBZHQJlcgUbkwN91fZQoaAZoCWgPQwhP54pSQjDhv5SGlFKUaBVLMmgWR0CZXDS4vvjPdX2UKGgGaAloD0MICAH5Eiq477+UhpRSlGgVSzJoFkdAmVvp40Mw13V9lChoBmgJaA9DCGLAkqtY/OS/lIaUUpRoFUsyaBZHQJleTmcOLBN1fZQoaAZoCWgPQwgTRN0HIPX7v5SGlFKUaBVLMmgWR0CZXgGB4D9wdX2UKGgGaAloD0MI0TyARX796L+UhpRSlGgVSzJoFkdAmV20+kgwGnV9lChoBmgJaA9DCE1qaAOwgeK/lIaUUpRoFUsyaBZHQJldah11W811fZQoaAZoCWgPQwgCSkONQlL1v5SGlFKUaBVLMmgWR0CZX6oPCl7/dX2UKGgGaAloD0MIcv4mFCIg9b+UhpRSlGgVSzJoFkdAmV9ccIZ62XV9lChoBmgJaA9DCAH6ff/mhfa/lIaUUpRoFUsyaBZHQJlfD99+gDl1fZQoaAZoCWgPQwgPK9zykVTyv5SGlFKUaBVLMmgWR0CZXsT7l7tzdX2UKGgGaAloD0MIpdk8DoM59r+UhpRSlGgVSzJoFkdAmWEFzp5eJHV9lChoBmgJaA9DCH/6z5of//K/lIaUUpRoFUsyaBZHQJlguBqbjLl1fZQoaAZoCWgPQwg17WKa6V7uv5SGlFKUaBVLMmgWR0CZYGuSwGGEdX2UKGgGaAloD0MIxVOPNLgt47+UhpRSlGgVSzJoFkdAmWAgvDgqE3V9lChoBmgJaA9DCED2evfHe9e/lIaUUpRoFUsyaBZHQJliZyZKFqV1fZQoaAZoCWgPQwh3E3zT9Fnhv5SGlFKUaBVLMmgWR0CZYhmE4//vdX2UKGgGaAloD0MIj6omiLqP47+UhpRSlGgVSzJoFkdAmWHM8kleGHV9lChoBmgJaA9DCHobmx2pfvO/lIaUUpRoFUsyaBZHQJlhgglnh891fZQoaAZoCWgPQwh5AfbRqWvxv5SGlFKUaBVLMmgWR0CZY8Gt6ol2dX2UKGgGaAloD0MIdVsiF5zB37+UhpRSlGgVSzJoFkdAmWN0BjnV5XV9lChoBmgJaA9DCGn9LQH4p92/lIaUUpRoFUsyaBZHQJljJ2eQMhJ1fZQoaAZoCWgPQwigbwuW6kL2v5SGlFKUaBVLMmgWR0CZYtyUs4DLdX2UKGgGaAloD0MIP5EnSddM4L+UhpRSlGgVSzJoFkdAmWUas+3YtnV9lChoBmgJaA9DCNujN9xHLva/lIaUUpRoFUsyaBZHQJlkzRgJC0F1fZQoaAZoCWgPQwjE6SRbXU71v5SGlFKUaBVLMmgWR0CZZIBomG/OdX2UKGgGaAloD0MIVfoJZ7dW8L+UhpRSlGgVSzJoFkdAmWQ1fE4vOHV9lChoBmgJaA9DCBQi4BCq1Oy/lIaUUpRoFUsyaBZHQJlmfG5tm+V1fZQoaAZoCWgPQwiY3Ciy1lD1v5SGlFKUaBVLMmgWR0CZZi7NjbztdX2UKGgGaAloD0MIJ9h/nZt29r+UhpRSlGgVSzJoFkdAmWXiPluFYnV9lChoBmgJaA9DCAZHyatzjOi/lIaUUpRoFUsyaBZHQJlll13dKul1fZQoaAZoCWgPQwjfUPhsHRzgv5SGlFKUaBVLMmgWR0CZZ946Oo5xdX2UKGgGaAloD0MISL99HThn3b+UhpRSlGgVSzJoFkdAmWeQoCuEEnV9lChoBmgJaA9DCP0QGyyc5PC/lIaUUpRoFUsyaBZHQJlnRBRhttR1fZQoaAZoCWgPQwgudvusMhP2v5SGlFKUaBVLMmgWR0CZZvkfLcKxdX2UKGgGaAloD0MIVmZK628J3r+UhpRSlGgVSzJoFkdAmWk/ECNjsnV9lChoBmgJaA9DCCBe1y/YDdq/lIaUUpRoFUsyaBZHQJlo8UDdP+J1fZQoaAZoCWgPQwgIsMivH+Lqv5SGlFKUaBVLMmgWR0CZaKSpBHCodX2UKGgGaAloD0MIIlD9g0iG3r+UhpRSlGgVSzJoFkdAmWhZ2hZha3V9lChoBmgJaA9DCPqcu10vzea/lIaUUpRoFUsyaBZHQJlqlB9kSVZ1fZQoaAZoCWgPQwifPZepSTD6v5SGlFKUaBVLMmgWR0CZakYqG1x9dX2UKGgGaAloD0MIEFt6NNUT87+UhpRSlGgVSzJoFkdAmWn5mqYJFHV9lChoBmgJaA9DCOvHJvkRv9a/lIaUUpRoFUsyaBZHQJlprtIClrN1fZQoaAZoCWgPQwgxKNNocrHzv5SGlFKUaBVLMmgWR0CZa/ELYwqRdX2UKGgGaAloD0MIKerMPSR81r+UhpRSlGgVSzJoFkdAmWujiGWUr3V9lChoBmgJaA9DCNkHWRZMfOu/lIaUUpRoFUsyaBZHQJlrVuUD+zd1fZQoaAZoCWgPQwiEnziAfl/0v5SGlFKUaBVLMmgWR0CZawv73wkPdX2UKGgGaAloD0MIKxN+qZ833L+UhpRSlGgVSzJoFkdAmW1OtnwocHV9lChoBmgJaA9DCLrdy31yFOG/lIaUUpRoFUsyaBZHQJltASM98qp1fZQoaAZoCWgPQwgZr3lVZ7Xvv5SGlFKUaBVLMmgWR0CZbLSX+l0pdX2UKGgGaAloD0MIz7uxoDCo5r+UhpRSlGgVSzJoFkdAmWxpz1bqyHV9lChoBmgJaA9DCC7KbJBJBvK/lIaUUpRoFUsyaBZHQJlurIJZ4fR1fZQoaAZoCWgPQwj8qlyo/Gvmv5SGlFKUaBVLMmgWR0CZbl7Lt/nXdX2UKGgGaAloD0MIG7tE9dZA6r+UhpRSlGgVSzJoFkdAmW4SOearm3V9lChoBmgJaA9DCIS4cvbOaOK/lIaUUpRoFUsyaBZHQJltx10T1011fZQoaAZoCWgPQwh2cLA3MWTzv5SGlFKUaBVLMmgWR0CZcCgsK9f1dX2UKGgGaAloD0MI9MMI4dHG5L+UhpRSlGgVSzJoFkdAmW/ajafzz3V9lChoBmgJaA9DCKa0/pYAfPG/lIaUUpRoFUsyaBZHQJlvjfoA4n51fZQoaAZoCWgPQwjK+s3EdCHXv5SGlFKUaBVLMmgWR0CZb0MKTjebdX2UKGgGaAloD0MIWcSww5h05b+UhpRSlGgVSzJoFkdAmXGhx1gYxnV9lChoBmgJaA9DCHwPlxx3SuG/lIaUUpRoFUsyaBZHQJlxVCHARCh1fZQoaAZoCWgPQwjhtUsbDgvxv5SGlFKUaBVLMmgWR0CZcQd2gWaddX2UKGgGaAloD0MIFFysqMF08b+UhpRSlGgVSzJoFkdAmXC9fCyhSXV9lChoBmgJaA9DCAA49uy5zPa/lIaUUpRoFUsyaBZHQJlzAkzGgjB1fZQoaAZoCWgPQwj+RdCYSdTbv5SGlFKUaBVLMmgWR0CZcrSfDk2hdX2UKGgGaAloD0MIgEkqU8xB9b+UhpRSlGgVSzJoFkdAmXJoFA3T/nV9lChoBmgJaA9DCIuJzce1IeW/lIaUUpRoFUsyaBZHQJlyHUd7v5R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-41-generic-x86_64-with-glibc2.10 # 44~20.04.1-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022", "Python": "3.8.12", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (368 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.6988512128358707, "std_reward": 0.23909481514227782, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-04T11:24:08.644289"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:155bd6fd0879671ed6a93b434f1d30a5706015d84d831b40b5761b0e2eabf9fe
|
3 |
+
size 3056
|