File size: 2,675 Bytes
64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a 64323c0 268045a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
language:
- tr
metrics:
- accuracy
- f1
base_model:
- FacebookAI/xlm-roberta-base
pipeline_tag: text-classification
---
# byunal/xlm-roberta-base-turkish-cased-stance
![Model card](https://huggingface.co/front/assets/huggingface_logo.svg)
This repository contains a fine-tuned BERT model for stance detection in Turkish. The base model for this fine-tuning is [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). The model has been specifically trained on a uniquely collected Turkish stance detection dataset.
## Model Description
- **Model Name**: byunal/xlm-roberta-base-turkish-cased-stance
- **Base Model**: [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base)
- **Task**: Stance Detection
- **Language**: Turkish
The model predicts the stance of a given text towards a specific target. Possible stance labels include:
- **Favor**: The text supports the target
- **Against**: The text opposes the target
- **Neutral**: The text does not express a clear stance on the target
## Installation
To install the necessary libraries and load the model, run:
```bash
pip install transformers
```
## Usage
Here’s a simple example of how to use the model for stance detection in Turkish:
```bash
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "byunal/xlm-roberta-base-turkish-cased-stance"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Example text
text = "Bu konu hakkında kesinlikle karşıyım."
# Tokenize input
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
# Perform prediction
with torch.no_grad():
outputs = model(**inputs)
# Get predicted stance
predictions = torch.argmax(outputs.logits, dim=-1)
stance_label = predictions.item()
# Display result
labels = ["Favor", "Against", "Neutral"]
print(f"The stance is: {labels[stance_label]}")
```
## Training
This model was fine-tuned using a specialized Turkish stance detection dataset that uniquely reflects various text contexts and opinions. The dataset includes diverse examples from social media, news articles, and public comments, ensuring a robust understanding of stance detection in real-world applications.
- Epochs: 10
- Batch Size: 32
- Learning Rate: 5e-5
- Optimizer: AdamW
## Evaluation
The model was evaluated using Accuracy and Macro F1-score on a validation dataset. The results confirm the model's effectiveness in stance detection tasks in Turkish.
- Accuracy Score: % 80.0
- Macro F1 Score: % 80.0 |