Update model.
Browse files- .gitattributes +1 -0
- LICENSE +202 -0
- NOTICE +13 -0
- README.md +21 -3
- added_tokens.json +26 -0
- config.json +43 -0
- configuration_qwen2.py +367 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- modeling_qwen2.py +1702 -0
- pytorch_model-00001-of-00006.bin +3 -0
- pytorch_model-00002-of-00006.bin +3 -0
- pytorch_model-00003-of-00006.bin +3 -0
- pytorch_model-00004-of-00006.bin +3 -0
- pytorch_model-00005-of-00006.bin +3 -0
- pytorch_model-00006-of-00006.bin +3 -0
- pytorch_model.bin.index.json +596 -0
- special_tokens_map.json +20 -0
- tokenizer.json +3 -0
- tokenizer_config.json +213 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright 2024 Alibaba Cloud
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
NOTICE
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2024 Alibaba Cloud. All rights reserved.
|
2 |
+
This software contains code that was originally developed and copyrighted by Alibaba Cloud. The original code is subject to the terms and conditions of the Apache License (Version 2.0), which can be found in the accompanying LICENSE file.
|
3 |
+
ByteDance and Tsinghua University has made modifications and enhancements to the original code. The modifications are as follows:
|
4 |
+
- Fine-tuned the model on the Qwen2.5-14B-Instruct model for ChatTS.
|
5 |
+
- Modified `modeling_qwen2.py` and `configuration_qwen2.py` for the ChatTS model.
|
6 |
+
- Modified the `README.md` file to provide some information about the usage of the modified model.
|
7 |
+
|
8 |
+
Please note that any distribution of this software must include this NOTICE file intact, along with the original LICENSE file and any other relevant license information, to ensure compliance with all applicable copyright and licensing requirements.
|
9 |
+
ByteDance and Tsinghua University
|
10 |
+
|
11 |
+
December 2024
|
12 |
+
|
13 |
+
This NOTICE is provided to clarify the copyright status and licensing of the software, ensuring that all users and distributors are aware of their rights and obligations.
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ChatTS-14B Model
|
2 |
+
This model is fine-tuned on the QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) model. For more usage details, please refer to the `README.md` in the ChatTS repository.
|
3 |
+
**由于仓库大小限制,本仓库未包含模型权重文件本身,只包含了模型必要的代码文件与LICENCE。权重文件参考:[]**
|
4 |
+
|
5 |
+
# Reference
|
6 |
+
- QWen2.5-14B-Instruct (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct)
|
7 |
+
- transformers (https://github.com/huggingface/transformers.git)
|
8 |
+
- [ChatTS Paper](https://arxiv.org/pdf/2412.03104)
|
9 |
+
|
10 |
+
# License
|
11 |
+
This model is licensed under the [Apache License 2.0](LICENSE).
|
12 |
+
|
13 |
+
# Cite
|
14 |
+
```
|
15 |
+
@article{xie2024chatts,
|
16 |
+
title={ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning},
|
17 |
+
author={Xie, Zhe and Li, Zeyan and He, Xiao and Xu, Longlong and Wen, Xidao and Zhang, Tieying and Chen, Jianjun and Shi, Rui and Pei, Dan},
|
18 |
+
journal={arXiv preprint arXiv:2412.03104},
|
19 |
+
year={2024}
|
20 |
+
}
|
21 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<ts/>": 151666,
|
5 |
+
"<ts>": 151665,
|
6 |
+
"<|box_end|>": 151649,
|
7 |
+
"<|box_start|>": 151648,
|
8 |
+
"<|endoftext|>": 151643,
|
9 |
+
"<|file_sep|>": 151664,
|
10 |
+
"<|fim_middle|>": 151660,
|
11 |
+
"<|fim_pad|>": 151662,
|
12 |
+
"<|fim_prefix|>": 151659,
|
13 |
+
"<|fim_suffix|>": 151661,
|
14 |
+
"<|im_end|>": 151645,
|
15 |
+
"<|im_start|>": 151644,
|
16 |
+
"<|image_pad|>": 151655,
|
17 |
+
"<|object_ref_end|>": 151647,
|
18 |
+
"<|object_ref_start|>": 151646,
|
19 |
+
"<|quad_end|>": 151651,
|
20 |
+
"<|quad_start|>": 151650,
|
21 |
+
"<|repo_name|>": 151663,
|
22 |
+
"<|video_pad|>": 151656,
|
23 |
+
"<|vision_end|>": 151653,
|
24 |
+
"<|vision_pad|>": 151654,
|
25 |
+
"<|vision_start|>": 151652
|
26 |
+
}
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/bn/mllmhl/sft_checkpoints/qwen2.5-14b-ts-explaints-1124-stage1-sp/checkpoint-400",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2TSForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_qwen2.Qwen2TSConfig",
|
9 |
+
"AutoModel": "modeling_qwen2.Qwen2TSForCausalLM",
|
10 |
+
"AutoModelForCausalLM": "modeling_qwen2.Qwen2TSForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"eos_token_id": 151645,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 5120,
|
16 |
+
"ignore_index": -100,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 13824,
|
19 |
+
"max_position_embeddings": 32768,
|
20 |
+
"max_window_layers": 70,
|
21 |
+
"model_type": "qwen2",
|
22 |
+
"num_attention_heads": 40,
|
23 |
+
"num_hidden_layers": 48,
|
24 |
+
"num_key_value_heads": 8,
|
25 |
+
"pad_token_id": 151643,
|
26 |
+
"rms_norm_eps": 1e-06,
|
27 |
+
"rope_theta": 1000000.0,
|
28 |
+
"sliding_window": 131072,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.46.2",
|
32 |
+
"ts": {
|
33 |
+
"hidden_size": 5120,
|
34 |
+
"num_features": 2,
|
35 |
+
"num_layers": 5,
|
36 |
+
"patch_size": 16
|
37 |
+
},
|
38 |
+
"ts_token_end_index": 151665,
|
39 |
+
"ts_token_start_index": 151666,
|
40 |
+
"use_cache": false,
|
41 |
+
"use_sliding_window": false,
|
42 |
+
"vocab_size": 152064
|
43 |
+
}
|
configuration_qwen2.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# The following code are reused from the QWen project (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) of Alibaba Cloud.
|
3 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
# The code is modified by ByteDance and Tsinghua University from the original implementation of Qwen:
|
18 |
+
# - We changed Qwen2Config to Qwen2TSConfig to support time series modeling.
|
19 |
+
|
20 |
+
""" Qwen2 model configuration"""
|
21 |
+
|
22 |
+
from transformers import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
from typing import *
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class Qwen2TSConfig(PretrainedConfig):
|
31 |
+
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
33 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
34 |
+
with the defaults will yield a similar configuration to that of
|
35 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
43 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
60 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
+
The non-linear activation function (function or string) in the decoder.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
63 |
+
The maximum sequence length that this model might ever be used with.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
67 |
+
The epsilon used by the rms normalization layers.
|
68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
70 |
+
relevant if `config.is_decoder=True`.
|
71 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
72 |
+
Whether the model's input and output word embeddings should be tied.
|
73 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
74 |
+
The base period of the RoPE embeddings.
|
75 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether to use sliding window attention.
|
77 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
78 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
79 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
80 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
81 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
82 |
+
The dropout ratio for the attention probabilities.
|
83 |
+
|
84 |
+
```python
|
85 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
86 |
+
|
87 |
+
>>> # Initializing a Qwen2 style configuration
|
88 |
+
>>> configuration = Qwen2Config()
|
89 |
+
|
90 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
91 |
+
>>> model = Qwen2Model(configuration)
|
92 |
+
|
93 |
+
>>> # Accessing the model configuration
|
94 |
+
>>> configuration = model.config
|
95 |
+
```"""
|
96 |
+
|
97 |
+
model_type = "qwen2"
|
98 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_size=151936,
|
103 |
+
hidden_size=4096,
|
104 |
+
intermediate_size=22016,
|
105 |
+
num_hidden_layers=32,
|
106 |
+
num_attention_heads=32,
|
107 |
+
num_key_value_heads=32,
|
108 |
+
hidden_act="silu",
|
109 |
+
max_position_embeddings=32768,
|
110 |
+
initializer_range=0.02,
|
111 |
+
rms_norm_eps=1e-6,
|
112 |
+
use_cache=True,
|
113 |
+
tie_word_embeddings=False,
|
114 |
+
rope_theta=10000.0,
|
115 |
+
use_sliding_window=False,
|
116 |
+
sliding_window=4096,
|
117 |
+
max_window_layers=28,
|
118 |
+
attention_dropout=0.0,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
self.vocab_size = vocab_size
|
122 |
+
self.max_position_embeddings = max_position_embeddings
|
123 |
+
self.hidden_size = hidden_size
|
124 |
+
self.intermediate_size = intermediate_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.use_sliding_window = use_sliding_window
|
128 |
+
self.sliding_window = sliding_window
|
129 |
+
self.max_window_layers = max_window_layers
|
130 |
+
|
131 |
+
# for backward compatibility
|
132 |
+
if num_key_value_heads is None:
|
133 |
+
num_key_value_heads = num_attention_heads
|
134 |
+
|
135 |
+
self.num_key_value_heads = num_key_value_heads
|
136 |
+
self.hidden_act = hidden_act
|
137 |
+
self.initializer_range = initializer_range
|
138 |
+
self.rms_norm_eps = rms_norm_eps
|
139 |
+
self.use_cache = use_cache
|
140 |
+
self.rope_theta = rope_theta
|
141 |
+
self.attention_dropout = attention_dropout
|
142 |
+
|
143 |
+
super().__init__(
|
144 |
+
tie_word_embeddings=tie_word_embeddings,
|
145 |
+
**kwargs,
|
146 |
+
)
|
147 |
+
|
148 |
+
TINYTIMEMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
149 |
+
|
150 |
+
|
151 |
+
class TinyTimeMixerConfig(PretrainedConfig):
|
152 |
+
r"""
|
153 |
+
This is the configuration class to store the configuration of a [`TinyTimeMixerModel`]. It is used to instantiate a
|
154 |
+
TinyTimeMixer model according to the specified arguments, defining the model architecture. Instantiating a
|
155 |
+
configuration with the defaults will yield a similar configuration to that of the TinyTimeMixer {} architecture.
|
156 |
+
|
157 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
158 |
+
documentation from [`PretrainedConfig`] for more information.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
context_length (`int`, *optional*, defaults to 64)
|
162 |
+
The context/history length for the input sequence.
|
163 |
+
patch_length (`int`, *optional*, defaults to 8)
|
164 |
+
The patch length for the input sequence.
|
165 |
+
num_input_channels (`int`):
|
166 |
+
Number of input variates. For Univariate, set it to 1.
|
167 |
+
patch_stride (`int`, *optional*, defaults to 8):
|
168 |
+
Amount of points to stride. If its value is same as patch_length, we get non-overlapping patches.
|
169 |
+
d_model (`int`, *optional*, defaults to 16):
|
170 |
+
Hidden feature size of the model.
|
171 |
+
prediction_length (`int`, *optional*, defaults to 16)
|
172 |
+
Number of time steps to forecast for a forecasting task. Also known as the Forecast Horizon.
|
173 |
+
expansion_factor (`int`, *optional*, defaults to 2):
|
174 |
+
Expansion factor to use inside MLP. Recommended range is 2-5. Larger value indicates more complex model.
|
175 |
+
num_layers (`int`, *optional*, defaults to 3):
|
176 |
+
Number of layers to use. Recommended range is 3-15. Larger value indicates more complex model.
|
177 |
+
dropout (`float`, *optional*, defaults to 0.2):
|
178 |
+
The dropout probability the `TinyTimeMixer` backbone. Recommended range is 0.2-0.7
|
179 |
+
mode (`str`, *optional*, defaults to `"common_channel"`):
|
180 |
+
Mixer Mode. Determines how to process the channels. Allowed values: "common_channel", "mix_channel". In
|
181 |
+
"common_channel" mode, we follow Channel-independent modelling with no explicit channel-mixing. Channel
|
182 |
+
mixing happens in an implicit manner via shared weights across channels. (preferred first approach) In
|
183 |
+
"mix_channel" mode, we follow explicit channel-mixing in addition to patch and feature mixer. (preferred
|
184 |
+
approach when channel correlations are very important to model)
|
185 |
+
gated_attn (`bool`, *optional*, defaults to `True`):
|
186 |
+
Enable Gated Attention.
|
187 |
+
norm_mlp (`str`, *optional*, defaults to `"LayerNorm"`):
|
188 |
+
Normalization layer (BatchNorm or LayerNorm).
|
189 |
+
self_attn (`bool`, *optional*, defaults to `False`):
|
190 |
+
Enable Tiny self attention across patches. This can be enabled when the output of Vanilla TinyTimeMixer with
|
191 |
+
gated attention is not satisfactory. Enabling this leads to explicit pair-wise attention and modelling
|
192 |
+
across patches.
|
193 |
+
self_attn_heads (`int`, *optional*, defaults to 1):
|
194 |
+
Number of self-attention heads. Works only when `self_attn` is set to `True`.
|
195 |
+
use_positional_encoding (`bool`, *optional*, defaults to `False`):
|
196 |
+
Enable the use of positional embedding for the tiny self-attention layers. Works only when `self_attn` is
|
197 |
+
set to `True`.
|
198 |
+
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
|
199 |
+
Positional encodings. Options `"random"` and `"sincos"` are supported. Works only when
|
200 |
+
`use_positional_encoding` is set to `True`
|
201 |
+
scaling (`string` or `bool`, *optional*, defaults to `"std"`):
|
202 |
+
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
|
203 |
+
scaler is set to "mean".
|
204 |
+
loss (`string`, *optional*, defaults to `"mse"`):
|
205 |
+
The loss function for the model. Defaults to mean squared error "mse". Allowed values: ["mse", "mae"]
|
206 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
207 |
+
The standard deviation of the truncated normal weight initialization distribution.
|
208 |
+
post_init (`bool`, *optional*, defaults to `False`):
|
209 |
+
Whether to use custom weight initialization from `transformers` library, or the default initialization in
|
210 |
+
`PyTorch`. Setting it to `False` performs `PyTorch` weight initialization.
|
211 |
+
norm_eps (`float`, *optional*, defaults to 1e-05):
|
212 |
+
A value added to the denominator for numerical stability of normalization.
|
213 |
+
adaptive_patching_levels (`int`, *optional*, defaults to 0):
|
214 |
+
If adaptive_patching_levels is i, then we will have i levels with each level having n_layers.
|
215 |
+
Level id starts with 0. num_patches at level i will be multipled by (2^i) and num_features at level i will be divided by (2^i).
|
216 |
+
For Ex. if adaptive_patching_levels is 3 - then we will have 3 levels:
|
217 |
+
level 2: num_features//(2^2), num_patches*(2^2)
|
218 |
+
level 1: num_features//(2^1), num_patches*(2^1)
|
219 |
+
level 0: num_features//(2^0), num_patches*(2^0)
|
220 |
+
adaptive_patching_levels = 1 is same as one level PatchTSMixer. This module gets disabled when adaptive_patching_levels is 0 or neg value. Defaults to 0 (off mode).
|
221 |
+
resolution_prefix_tuning (`bool`, *optional*, defaults to `False`):
|
222 |
+
Enable if your dataloader has time resolution information as defined in `get_freq_mapping` function in `modelling_tinytimemixer`.
|
223 |
+
frequency_token_vocab_size (`int`, *optional*, defaults to 5):
|
224 |
+
Vocab size to use when resolution_prefix_tuning is enabled.
|
225 |
+
head_dropout (`float`, *optional*, defaults to 0.2):
|
226 |
+
The dropout probability the `TinyTimeMixer` head.
|
227 |
+
prediction_channel_indices (`list`, *optional*):
|
228 |
+
List of channel indices to forecast. If None, forecast all channels. Target data is expected to have all
|
229 |
+
channels and we explicitly filter the channels in prediction and target before loss computation. Please provide the indices
|
230 |
+
in sorted ascending order.
|
231 |
+
decoder_num_layers (`int`, *optional*, defaults to 8):
|
232 |
+
Number of layers to use in decoder
|
233 |
+
decoder_d_model(`int`, *optional*, defaults to 16):
|
234 |
+
Defines the hidden feature size of the decoder.
|
235 |
+
decoder_adaptive_patching_levels (`int`, *optional*, defaults to 0):
|
236 |
+
Adaptive Patching levels for decoder. Preferable to set it to 0 for decoder to keep it light weight.
|
237 |
+
decoder_raw_residual (`bool`, *optional*, defaults to `False`):
|
238 |
+
Flag to enable merging of raw embedding with encoder embedding for decoder input. Defaults to False.
|
239 |
+
decoder_mode (`string`, *optional*, defaults to `"common_channel"`):
|
240 |
+
Decoder channel mode. Use `"common_channel" for channel-independent modelling and `"mix_channel"` for channel-mixing modelling
|
241 |
+
use_decoder (`bool`, *optional*, defaults to `True`):
|
242 |
+
Enable to use decoder.
|
243 |
+
prediction_filter_length (`int`,*optional*, defaults to None):
|
244 |
+
Actual length in the prediction output to use for loss calculations.
|
245 |
+
|
246 |
+
|
247 |
+
Example:
|
248 |
+
|
249 |
+
```python
|
250 |
+
>>> from transformers import TinyTimeMixerConfig, TinyTimeMixerModel
|
251 |
+
|
252 |
+
>>> # Initializing a default TinyTimeMixer configuration
|
253 |
+
>>> configuration = TinyTimeMixerConfig()
|
254 |
+
|
255 |
+
>>> # Randomly initializing a model (with random weights) from the configuration
|
256 |
+
>>> model = TinyTimeMixerModel(configuration)
|
257 |
+
|
258 |
+
>>> # Accessing the model configuration
|
259 |
+
>>> configuration = model.config
|
260 |
+
```"""
|
261 |
+
|
262 |
+
model_type = "tinytimemixer"
|
263 |
+
attribute_map = {
|
264 |
+
"hidden_size": "d_model",
|
265 |
+
"num_hidden_layers": "num_layers",
|
266 |
+
}
|
267 |
+
|
268 |
+
def __init__(
|
269 |
+
self,
|
270 |
+
# Time series specific configuration
|
271 |
+
context_length: int = 64,
|
272 |
+
patch_length: int = 8,
|
273 |
+
num_input_channels: int = 1,
|
274 |
+
prediction_length: int = 16,
|
275 |
+
patch_stride: int = 8,
|
276 |
+
prediction_channel_indices: Optional[list] = None,
|
277 |
+
# General model configuration
|
278 |
+
d_model: int = 16,
|
279 |
+
expansion_factor: int = 2,
|
280 |
+
num_layers: int = 3,
|
281 |
+
dropout: float = 0.2,
|
282 |
+
mode: str = "common_channel",
|
283 |
+
gated_attn: bool = True,
|
284 |
+
norm_mlp: str = "LayerNorm",
|
285 |
+
self_attn: bool = False,
|
286 |
+
self_attn_heads: int = 1,
|
287 |
+
use_positional_encoding: bool = False,
|
288 |
+
positional_encoding_type: str = "sincos",
|
289 |
+
scaling: Optional[Union[str, bool]] = "std",
|
290 |
+
loss: str = "mse",
|
291 |
+
init_std: float = 0.02,
|
292 |
+
post_init: bool = False,
|
293 |
+
norm_eps: float = 1e-5,
|
294 |
+
adaptive_patching_levels: int = 0,
|
295 |
+
resolution_prefix_tuning: bool = False,
|
296 |
+
frequency_token_vocab_size: int = 5,
|
297 |
+
# General head configuration
|
298 |
+
head_dropout: float = 0.2,
|
299 |
+
# decoder parameters
|
300 |
+
decoder_num_layers: int = 8,
|
301 |
+
decoder_d_model: int = 8,
|
302 |
+
decoder_adaptive_patching_levels: int = 0,
|
303 |
+
decoder_raw_residual: bool = False,
|
304 |
+
decoder_mode: str = "common_channel",
|
305 |
+
use_decoder: bool = True,
|
306 |
+
# prediction length filtering
|
307 |
+
prediction_filter_length: Optional[int] = None,
|
308 |
+
**kwargs,
|
309 |
+
):
|
310 |
+
self.num_input_channels = num_input_channels
|
311 |
+
self.context_length = context_length
|
312 |
+
self.patch_length = patch_length
|
313 |
+
self.expansion_factor = expansion_factor
|
314 |
+
self.num_layers = num_layers
|
315 |
+
self.dropout = dropout
|
316 |
+
self.mode = mode
|
317 |
+
self.gated_attn = gated_attn
|
318 |
+
self.norm_mlp = norm_mlp
|
319 |
+
self.scaling = scaling
|
320 |
+
self.head_dropout = head_dropout
|
321 |
+
|
322 |
+
self.patch_last = True
|
323 |
+
self.use_positional_encoding = use_positional_encoding
|
324 |
+
self.positional_encoding_type = positional_encoding_type
|
325 |
+
self.prediction_length = prediction_length
|
326 |
+
self.prediction_channel_indices = prediction_channel_indices
|
327 |
+
self.self_attn = self_attn
|
328 |
+
self.self_attn_heads = self_attn_heads
|
329 |
+
self.init_std = init_std
|
330 |
+
self.post_init = post_init
|
331 |
+
self.loss = loss
|
332 |
+
self.norm_eps = norm_eps
|
333 |
+
|
334 |
+
self.use_decoder = use_decoder
|
335 |
+
|
336 |
+
self.adaptive_patching_levels = adaptive_patching_levels
|
337 |
+
self.resolution_prefix_tuning = resolution_prefix_tuning
|
338 |
+
self.decoder_num_layers = decoder_num_layers
|
339 |
+
self.decoder_adaptive_patching_levels = decoder_adaptive_patching_levels
|
340 |
+
self.decoder_raw_residual = decoder_raw_residual
|
341 |
+
self.decoder_mode = decoder_mode
|
342 |
+
self.frequency_token_vocab_size = frequency_token_vocab_size
|
343 |
+
self.d_model = d_model
|
344 |
+
self.patch_stride = patch_stride
|
345 |
+
self.decoder_d_model = decoder_d_model
|
346 |
+
self.init_processing = False
|
347 |
+
self.prediction_filter_length = prediction_filter_length
|
348 |
+
|
349 |
+
super().__init__(**kwargs)
|
350 |
+
|
351 |
+
def check_and_init_preprocessing(self):
|
352 |
+
self.init_processing = True
|
353 |
+
|
354 |
+
if not hasattr(self, "num_patches"):
|
355 |
+
self.num_patches = (
|
356 |
+
max(self.context_length, self.patch_length) - self.patch_length
|
357 |
+
) // self.patch_stride + 1
|
358 |
+
|
359 |
+
if self.resolution_prefix_tuning:
|
360 |
+
self.num_patches += 1
|
361 |
+
|
362 |
+
if self.prediction_filter_length is not None:
|
363 |
+
if self.prediction_filter_length > self.prediction_length or self.prediction_filter_length <= 0:
|
364 |
+
raise ValueError("prediction_filter_length should be positive and less than prediction_length")
|
365 |
+
|
366 |
+
if self.prediction_channel_indices is not None:
|
367 |
+
self.prediction_channel_indices.sort()
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.46.2"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_qwen2.py
ADDED
@@ -0,0 +1,1702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# The following code are reused from the QWen project (https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) of Alibaba Cloud.
|
3 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
# The code is modified by ByteDance and Tsinghua University from the original implementation of Qwen:
|
23 |
+
# - Support time series modality for Qwen2 model.
|
24 |
+
|
25 |
+
""" PyTorch Qwen2 model."""
|
26 |
+
import inspect
|
27 |
+
import math
|
28 |
+
import copy
|
29 |
+
from typing import List, Optional, Tuple, Union
|
30 |
+
from dataclasses import dataclass
|
31 |
+
|
32 |
+
import torch
|
33 |
+
import torch.nn.functional as F
|
34 |
+
import torch.utils.checkpoint
|
35 |
+
from torch import nn
|
36 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
37 |
+
|
38 |
+
from transformers.activations import ACT2FN
|
39 |
+
from transformers.cache_utils import Cache, DynamicCache
|
40 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
41 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
42 |
+
from transformers.modeling_utils import PreTrainedModel
|
43 |
+
from transformers import AutoConfig
|
44 |
+
from transformers.utils import (
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
is_flash_attn_2_available,
|
48 |
+
is_flash_attn_greater_or_equal_2_10,
|
49 |
+
logging,
|
50 |
+
replace_return_docstrings,
|
51 |
+
ModelOutput
|
52 |
+
)
|
53 |
+
from .configuration_qwen2 import Qwen2TSConfig, TinyTimeMixerConfig
|
54 |
+
|
55 |
+
# from .modeling_tinytimemixer import TinyTimeMixerForPrediction
|
56 |
+
# from .configuration_tinytimemixer import TinyTimeMixerConfig
|
57 |
+
|
58 |
+
if is_flash_attn_2_available():
|
59 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
60 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
61 |
+
|
62 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
63 |
+
|
64 |
+
|
65 |
+
logger = logging.get_logger(__name__)
|
66 |
+
|
67 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
|
68 |
+
_CONFIG_FOR_DOC = "Qwen2TSConfig"
|
69 |
+
|
70 |
+
|
71 |
+
########################Naive TS Embedding#####################
|
72 |
+
class TimeSeriesEmbedding(nn.Module):
|
73 |
+
def __init__(self, config):
|
74 |
+
super(TimeSeriesEmbedding, self).__init__()
|
75 |
+
self.patch_size = config['patch_size']
|
76 |
+
self.num_layers = config['num_layers']
|
77 |
+
self.hidden_size = config['hidden_size']
|
78 |
+
self.num_features = config['num_features']
|
79 |
+
|
80 |
+
layers = []
|
81 |
+
# 调整输入大小以包含掩码通道
|
82 |
+
input_size = 1 * self.patch_size
|
83 |
+
|
84 |
+
for _ in range(self.num_layers - 1):
|
85 |
+
layers.append(nn.Linear(input_size, self.hidden_size))
|
86 |
+
layers.append(nn.GELU())
|
87 |
+
input_size = self.hidden_size
|
88 |
+
layers.append(nn.Linear(input_size, self.hidden_size))
|
89 |
+
|
90 |
+
self.mlp = nn.Sequential(*layers)
|
91 |
+
|
92 |
+
def forward(self, x: torch.Tensor):
|
93 |
+
batch_size = x.size(0)
|
94 |
+
x = x.reshape(batch_size, -1, self.num_features)
|
95 |
+
|
96 |
+
mask = x[:, :, -1]
|
97 |
+
valid_lengths = mask.sum(dim=1).long() # Shape: (batch_size)
|
98 |
+
|
99 |
+
patch_cnt = (valid_lengths + self.patch_size - 1) // self.patch_size # 向上取整
|
100 |
+
# print(f"[DEBUG] TimeSeriesEmbedding: {valid_lengths=}, {patch_cnt=}, {mask.shape=}")
|
101 |
+
|
102 |
+
patches_list = []
|
103 |
+
for i in range(batch_size):
|
104 |
+
vl = valid_lengths[i].item()
|
105 |
+
pc = patch_cnt[i].item()
|
106 |
+
if pc == 0:
|
107 |
+
continue
|
108 |
+
xi = x[i, :vl, :1]
|
109 |
+
total_padded_length = pc * self.patch_size
|
110 |
+
padding_length = total_padded_length - vl
|
111 |
+
if padding_length > 0:
|
112 |
+
padding = torch.zeros(padding_length, 1, device=x.device, dtype=x.dtype)
|
113 |
+
xi = torch.cat([xi, padding], dim=0)
|
114 |
+
xi = xi.reshape(pc, self.patch_size * 1)
|
115 |
+
patches_list.append(xi)
|
116 |
+
|
117 |
+
if patches_list:
|
118 |
+
x_patches = torch.cat(patches_list, dim=0) # Shape: (total_patch_cnt, patch_size * num_features)
|
119 |
+
x = self.mlp(x_patches)
|
120 |
+
else:
|
121 |
+
# 如果没有有效的 patches,返回空 tensor
|
122 |
+
x = torch.empty(0, self.hidden_size, device=x.device)
|
123 |
+
# print(f"[DEBUG] TimeSeriesEmbedding OUTPUT: {x.shape=}, {patch_cnt=}")
|
124 |
+
|
125 |
+
return x, patch_cnt
|
126 |
+
|
127 |
+
|
128 |
+
########################QWEN2###################################
|
129 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
130 |
+
def _get_unpad_data(attention_mask):
|
131 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
132 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
133 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
134 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
135 |
+
return (
|
136 |
+
indices,
|
137 |
+
cu_seqlens,
|
138 |
+
max_seqlen_in_batch,
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
143 |
+
class Qwen2RMSNorm(nn.Module):
|
144 |
+
def __init__(self, hidden_size, eps=1e-6):
|
145 |
+
"""
|
146 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
147 |
+
"""
|
148 |
+
super().__init__()
|
149 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
150 |
+
self.variance_epsilon = eps
|
151 |
+
|
152 |
+
def forward(self, hidden_states):
|
153 |
+
input_dtype = hidden_states.dtype
|
154 |
+
hidden_states = hidden_states.to(torch.float32)
|
155 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
156 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
157 |
+
return self.weight * hidden_states.to(input_dtype)
|
158 |
+
|
159 |
+
|
160 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2
|
161 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
162 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
163 |
+
super().__init__()
|
164 |
+
|
165 |
+
self.dim = dim
|
166 |
+
self.max_position_embeddings = max_position_embeddings
|
167 |
+
self.base = base
|
168 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
169 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
170 |
+
|
171 |
+
# Build here to make `torch.jit.trace` work.
|
172 |
+
self._set_cos_sin_cache(
|
173 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
174 |
+
)
|
175 |
+
|
176 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
177 |
+
self.max_seq_len_cached = seq_len
|
178 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
179 |
+
|
180 |
+
freqs = torch.outer(t, self.inv_freq)
|
181 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
182 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
183 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
184 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
185 |
+
|
186 |
+
def forward(self, x, seq_len=None):
|
187 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
188 |
+
if seq_len > self.max_seq_len_cached:
|
189 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
190 |
+
|
191 |
+
return (
|
192 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
193 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
198 |
+
def rotate_half(x):
|
199 |
+
"""Rotates half the hidden dims of the input."""
|
200 |
+
x1 = x[..., : x.shape[-1] // 2]
|
201 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
202 |
+
return torch.cat((-x2, x1), dim=-1)
|
203 |
+
|
204 |
+
|
205 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
206 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
207 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
q (`torch.Tensor`): The query tensor.
|
211 |
+
k (`torch.Tensor`): The key tensor.
|
212 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
213 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
214 |
+
position_ids (`torch.Tensor`):
|
215 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
216 |
+
used to pass offsetted position ids when working with a KV-cache.
|
217 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
218 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
219 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
220 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
221 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
222 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
223 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
224 |
+
Returns:
|
225 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
226 |
+
"""
|
227 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
228 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
229 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
230 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
231 |
+
return q_embed, k_embed
|
232 |
+
|
233 |
+
|
234 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
|
235 |
+
class Qwen2MLP(nn.Module):
|
236 |
+
def __init__(self, config):
|
237 |
+
super().__init__()
|
238 |
+
self.config = config
|
239 |
+
self.hidden_size = config.hidden_size
|
240 |
+
self.intermediate_size = config.intermediate_size
|
241 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
242 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
243 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
244 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
245 |
+
|
246 |
+
def forward(self, x):
|
247 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
248 |
+
|
249 |
+
|
250 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
251 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
252 |
+
"""
|
253 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
254 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
255 |
+
"""
|
256 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
257 |
+
if n_rep == 1:
|
258 |
+
return hidden_states
|
259 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
260 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
261 |
+
|
262 |
+
|
263 |
+
class Qwen2Attention(nn.Module):
|
264 |
+
"""
|
265 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
266 |
+
and "Generating Long Sequences with Sparse Transformers".
|
267 |
+
"""
|
268 |
+
|
269 |
+
def __init__(self, config: Qwen2TSConfig, layer_idx: Optional[int] = None):
|
270 |
+
super().__init__()
|
271 |
+
self.config = config
|
272 |
+
self.layer_idx = layer_idx
|
273 |
+
if layer_idx is None:
|
274 |
+
logger.warning_once(
|
275 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
276 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
277 |
+
"when creating this class."
|
278 |
+
)
|
279 |
+
|
280 |
+
self.hidden_size = config.hidden_size
|
281 |
+
self.num_heads = config.num_attention_heads
|
282 |
+
self.head_dim = self.hidden_size // self.num_heads
|
283 |
+
self.num_key_value_heads = config.num_key_value_heads
|
284 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
285 |
+
self.max_position_embeddings = config.max_position_embeddings
|
286 |
+
self.rope_theta = config.rope_theta
|
287 |
+
self.is_causal = True
|
288 |
+
self.attention_dropout = config.attention_dropout
|
289 |
+
|
290 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
291 |
+
raise ValueError(
|
292 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
293 |
+
f" and `num_heads`: {self.num_heads})."
|
294 |
+
)
|
295 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
296 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
297 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
298 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
299 |
+
|
300 |
+
self.rotary_emb = Qwen2RotaryEmbedding(
|
301 |
+
self.head_dim,
|
302 |
+
max_position_embeddings=self.max_position_embeddings,
|
303 |
+
base=self.rope_theta,
|
304 |
+
)
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: torch.Tensor,
|
309 |
+
attention_mask: Optional[torch.Tensor] = None,
|
310 |
+
position_ids: Optional[torch.LongTensor] = None,
|
311 |
+
past_key_value: Optional[Cache] = None,
|
312 |
+
output_attentions: bool = False,
|
313 |
+
use_cache: bool = False,
|
314 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
315 |
+
bsz, q_len, _ = hidden_states.size()
|
316 |
+
|
317 |
+
query_states = self.q_proj(hidden_states)
|
318 |
+
key_states = self.k_proj(hidden_states)
|
319 |
+
value_states = self.v_proj(hidden_states)
|
320 |
+
|
321 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
322 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
323 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
324 |
+
|
325 |
+
kv_seq_len = key_states.shape[-2]
|
326 |
+
if past_key_value is not None:
|
327 |
+
if self.layer_idx is None:
|
328 |
+
raise ValueError(
|
329 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
330 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
331 |
+
"with a layer index."
|
332 |
+
)
|
333 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
334 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
335 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
336 |
+
|
337 |
+
if past_key_value is not None:
|
338 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
339 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
340 |
+
|
341 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
342 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
343 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
344 |
+
|
345 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
346 |
+
|
347 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
348 |
+
raise ValueError(
|
349 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
350 |
+
f" {attn_weights.size()}"
|
351 |
+
)
|
352 |
+
|
353 |
+
if attention_mask is not None:
|
354 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
355 |
+
raise ValueError(
|
356 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
357 |
+
)
|
358 |
+
|
359 |
+
attn_weights = attn_weights + attention_mask
|
360 |
+
|
361 |
+
# upcast attention to fp32
|
362 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
363 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
364 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
365 |
+
|
366 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
367 |
+
raise ValueError(
|
368 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
369 |
+
f" {attn_output.size()}"
|
370 |
+
)
|
371 |
+
|
372 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
373 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
374 |
+
|
375 |
+
attn_output = self.o_proj(attn_output)
|
376 |
+
|
377 |
+
if not output_attentions:
|
378 |
+
attn_weights = None
|
379 |
+
|
380 |
+
return attn_output, attn_weights, past_key_value
|
381 |
+
|
382 |
+
|
383 |
+
class Qwen2FlashAttention2(Qwen2Attention):
|
384 |
+
"""
|
385 |
+
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
386 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
387 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
388 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
389 |
+
config.max_window_layers layers.
|
390 |
+
"""
|
391 |
+
|
392 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
393 |
+
def __init__(self, *args, **kwargs):
|
394 |
+
super().__init__(*args, **kwargs)
|
395 |
+
|
396 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
397 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
398 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
399 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
400 |
+
|
401 |
+
def forward(
|
402 |
+
self,
|
403 |
+
hidden_states: torch.Tensor,
|
404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
405 |
+
position_ids: Optional[torch.LongTensor] = None,
|
406 |
+
past_key_value: Optional[Cache] = None,
|
407 |
+
output_attentions: bool = False,
|
408 |
+
use_cache: bool = False,
|
409 |
+
):
|
410 |
+
bsz, q_len, _ = hidden_states.size()
|
411 |
+
|
412 |
+
query_states = self.q_proj(hidden_states)
|
413 |
+
key_states = self.k_proj(hidden_states)
|
414 |
+
value_states = self.v_proj(hidden_states)
|
415 |
+
|
416 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
417 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
418 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
419 |
+
|
420 |
+
kv_seq_len = key_states.shape[-2]
|
421 |
+
if past_key_value is not None:
|
422 |
+
if self.layer_idx is None:
|
423 |
+
raise ValueError(
|
424 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
425 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
426 |
+
"with a layer index."
|
427 |
+
)
|
428 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
429 |
+
|
430 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
431 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
432 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
433 |
+
|
434 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
435 |
+
|
436 |
+
use_sliding_windows = (
|
437 |
+
_flash_supports_window_size
|
438 |
+
and getattr(self.config, "sliding_window", None) is not None
|
439 |
+
and kv_seq_len > self.config.sliding_window
|
440 |
+
and self.config.use_sliding_window
|
441 |
+
)
|
442 |
+
|
443 |
+
if not _flash_supports_window_size:
|
444 |
+
logger.warning_once(
|
445 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
446 |
+
" make sure to upgrade flash-attn library."
|
447 |
+
)
|
448 |
+
|
449 |
+
if past_key_value is not None:
|
450 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
451 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
452 |
+
if (
|
453 |
+
getattr(self.config, "sliding_window", None) is not None
|
454 |
+
and kv_seq_len > self.config.sliding_window
|
455 |
+
and cache_has_contents
|
456 |
+
):
|
457 |
+
slicing_tokens = 1 - self.config.sliding_window
|
458 |
+
|
459 |
+
past_key = past_key_value[self.layer_idx][0]
|
460 |
+
past_value = past_key_value[self.layer_idx][1]
|
461 |
+
|
462 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
463 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
464 |
+
|
465 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
466 |
+
raise ValueError(
|
467 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
468 |
+
f" {past_key.shape}"
|
469 |
+
)
|
470 |
+
|
471 |
+
if attention_mask is not None:
|
472 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
473 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
474 |
+
|
475 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
476 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
477 |
+
|
478 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
479 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
480 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
481 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
482 |
+
|
483 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
484 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
485 |
+
# cast them back in float16 just to be sure everything works as expected.
|
486 |
+
input_dtype = query_states.dtype
|
487 |
+
if input_dtype == torch.float32:
|
488 |
+
if torch.is_autocast_enabled():
|
489 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
490 |
+
# Handle the case where the model is quantized
|
491 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
492 |
+
target_dtype = self.config._pre_quantization_dtype
|
493 |
+
else:
|
494 |
+
target_dtype = self.q_proj.weight.dtype
|
495 |
+
|
496 |
+
logger.warning_once(
|
497 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
498 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
499 |
+
f" {target_dtype}."
|
500 |
+
)
|
501 |
+
|
502 |
+
query_states = query_states.to(target_dtype)
|
503 |
+
key_states = key_states.to(target_dtype)
|
504 |
+
value_states = value_states.to(target_dtype)
|
505 |
+
|
506 |
+
# Reashape to the expected shape for Flash Attention
|
507 |
+
query_states = query_states.transpose(1, 2)
|
508 |
+
key_states = key_states.transpose(1, 2)
|
509 |
+
value_states = value_states.transpose(1, 2)
|
510 |
+
|
511 |
+
attn_output = self._flash_attention_forward(
|
512 |
+
query_states,
|
513 |
+
key_states,
|
514 |
+
value_states,
|
515 |
+
attention_mask,
|
516 |
+
q_len,
|
517 |
+
dropout=dropout_rate,
|
518 |
+
use_sliding_windows=use_sliding_windows,
|
519 |
+
)
|
520 |
+
|
521 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
522 |
+
attn_output = self.o_proj(attn_output)
|
523 |
+
|
524 |
+
if not output_attentions:
|
525 |
+
attn_weights = None
|
526 |
+
|
527 |
+
return attn_output, attn_weights, past_key_value
|
528 |
+
|
529 |
+
def _flash_attention_forward(
|
530 |
+
self,
|
531 |
+
query_states,
|
532 |
+
key_states,
|
533 |
+
value_states,
|
534 |
+
attention_mask,
|
535 |
+
query_length,
|
536 |
+
dropout=0.0,
|
537 |
+
softmax_scale=None,
|
538 |
+
use_sliding_windows=False,
|
539 |
+
):
|
540 |
+
"""
|
541 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
542 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
543 |
+
|
544 |
+
Args:
|
545 |
+
query_states (`torch.Tensor`):
|
546 |
+
Input query states to be passed to Flash Attention API
|
547 |
+
key_states (`torch.Tensor`):
|
548 |
+
Input key states to be passed to Flash Attention API
|
549 |
+
value_states (`torch.Tensor`):
|
550 |
+
Input value states to be passed to Flash Attention API
|
551 |
+
attention_mask (`torch.Tensor`):
|
552 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
553 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
554 |
+
dropout (`float`):
|
555 |
+
Attention dropout
|
556 |
+
softmax_scale (`float`, *optional*):
|
557 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
558 |
+
use_sliding_windows (`bool`, *optional*):
|
559 |
+
Whether to activate sliding window attention.
|
560 |
+
"""
|
561 |
+
if not self._flash_attn_uses_top_left_mask:
|
562 |
+
causal = self.is_causal
|
563 |
+
else:
|
564 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
565 |
+
causal = self.is_causal and query_length != 1
|
566 |
+
|
567 |
+
# Decide whether to use SWA or not by layer index.
|
568 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
569 |
+
use_sliding_windows = False
|
570 |
+
|
571 |
+
# Contains at least one padding token in the sequence
|
572 |
+
if attention_mask is not None:
|
573 |
+
batch_size = query_states.shape[0]
|
574 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
575 |
+
query_states, key_states, value_states, attention_mask, query_length
|
576 |
+
)
|
577 |
+
|
578 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
579 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
580 |
+
|
581 |
+
if not use_sliding_windows:
|
582 |
+
attn_output_unpad = flash_attn_varlen_func(
|
583 |
+
query_states,
|
584 |
+
key_states,
|
585 |
+
value_states,
|
586 |
+
cu_seqlens_q=cu_seqlens_q,
|
587 |
+
cu_seqlens_k=cu_seqlens_k,
|
588 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
589 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
590 |
+
dropout_p=dropout,
|
591 |
+
softmax_scale=softmax_scale,
|
592 |
+
causal=causal,
|
593 |
+
)
|
594 |
+
else:
|
595 |
+
attn_output_unpad = flash_attn_varlen_func(
|
596 |
+
query_states,
|
597 |
+
key_states,
|
598 |
+
value_states,
|
599 |
+
cu_seqlens_q=cu_seqlens_q,
|
600 |
+
cu_seqlens_k=cu_seqlens_k,
|
601 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
602 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
603 |
+
dropout_p=dropout,
|
604 |
+
softmax_scale=softmax_scale,
|
605 |
+
causal=causal,
|
606 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
607 |
+
)
|
608 |
+
|
609 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
610 |
+
else:
|
611 |
+
if not use_sliding_windows:
|
612 |
+
attn_output = flash_attn_func(
|
613 |
+
query_states,
|
614 |
+
key_states,
|
615 |
+
value_states,
|
616 |
+
dropout,
|
617 |
+
softmax_scale=softmax_scale,
|
618 |
+
causal=causal,
|
619 |
+
)
|
620 |
+
else:
|
621 |
+
attn_output = flash_attn_func(
|
622 |
+
query_states,
|
623 |
+
key_states,
|
624 |
+
value_states,
|
625 |
+
dropout,
|
626 |
+
softmax_scale=softmax_scale,
|
627 |
+
causal=causal,
|
628 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
629 |
+
)
|
630 |
+
|
631 |
+
return attn_output
|
632 |
+
|
633 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
634 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
635 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
636 |
+
|
637 |
+
# On the first iteration we need to properly re-create the padding mask
|
638 |
+
# by slicing it on the proper place
|
639 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
640 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
641 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
642 |
+
|
643 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
644 |
+
|
645 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
646 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
647 |
+
|
648 |
+
if query_length == kv_seq_len:
|
649 |
+
query_layer = index_first_axis(
|
650 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
651 |
+
)
|
652 |
+
cu_seqlens_q = cu_seqlens_k
|
653 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
654 |
+
indices_q = indices_k
|
655 |
+
elif query_length == 1:
|
656 |
+
max_seqlen_in_batch_q = 1
|
657 |
+
cu_seqlens_q = torch.arange(
|
658 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
659 |
+
) # There is a memcpy here, that is very bad.
|
660 |
+
indices_q = cu_seqlens_q[:-1]
|
661 |
+
query_layer = query_layer.squeeze(1)
|
662 |
+
else:
|
663 |
+
# The -q_len: slice assumes left padding.
|
664 |
+
attention_mask = attention_mask[:, -query_length:]
|
665 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
666 |
+
|
667 |
+
return (
|
668 |
+
query_layer,
|
669 |
+
key_layer,
|
670 |
+
value_layer,
|
671 |
+
indices_q,
|
672 |
+
(cu_seqlens_q, cu_seqlens_k),
|
673 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
674 |
+
)
|
675 |
+
|
676 |
+
|
677 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2
|
678 |
+
class Qwen2SdpaAttention(Qwen2Attention):
|
679 |
+
"""
|
680 |
+
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
681 |
+
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
682 |
+
SDPA API.
|
683 |
+
"""
|
684 |
+
|
685 |
+
# Adapted from Qwen2Attention.forward
|
686 |
+
def forward(
|
687 |
+
self,
|
688 |
+
hidden_states: torch.Tensor,
|
689 |
+
attention_mask: Optional[torch.Tensor] = None,
|
690 |
+
position_ids: Optional[torch.LongTensor] = None,
|
691 |
+
past_key_value: Optional[Cache] = None,
|
692 |
+
output_attentions: bool = False,
|
693 |
+
use_cache: bool = False,
|
694 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
695 |
+
if output_attentions:
|
696 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
697 |
+
logger.warning_once(
|
698 |
+
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
699 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
700 |
+
)
|
701 |
+
return super().forward(
|
702 |
+
hidden_states=hidden_states,
|
703 |
+
attention_mask=attention_mask,
|
704 |
+
position_ids=position_ids,
|
705 |
+
past_key_value=past_key_value,
|
706 |
+
output_attentions=output_attentions,
|
707 |
+
use_cache=use_cache,
|
708 |
+
)
|
709 |
+
|
710 |
+
bsz, q_len, _ = hidden_states.size()
|
711 |
+
|
712 |
+
query_states = self.q_proj(hidden_states)
|
713 |
+
key_states = self.k_proj(hidden_states)
|
714 |
+
value_states = self.v_proj(hidden_states)
|
715 |
+
|
716 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
717 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
718 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
719 |
+
|
720 |
+
kv_seq_len = key_states.shape[-2]
|
721 |
+
if past_key_value is not None:
|
722 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
723 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
724 |
+
|
725 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
726 |
+
|
727 |
+
if past_key_value is not None:
|
728 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
729 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
730 |
+
|
731 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
732 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
733 |
+
|
734 |
+
if attention_mask is not None:
|
735 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
736 |
+
raise ValueError(
|
737 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
738 |
+
)
|
739 |
+
|
740 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
741 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
742 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
743 |
+
query_states = query_states.contiguous()
|
744 |
+
key_states = key_states.contiguous()
|
745 |
+
value_states = value_states.contiguous()
|
746 |
+
|
747 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
748 |
+
query_states,
|
749 |
+
key_states,
|
750 |
+
value_states,
|
751 |
+
attn_mask=attention_mask,
|
752 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
753 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
754 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
755 |
+
)
|
756 |
+
|
757 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
758 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
759 |
+
|
760 |
+
attn_output = self.o_proj(attn_output)
|
761 |
+
|
762 |
+
return attn_output, None, past_key_value
|
763 |
+
|
764 |
+
|
765 |
+
QWEN2_ATTENTION_CLASSES = {
|
766 |
+
"eager": Qwen2Attention,
|
767 |
+
"flash_attention_2": Qwen2FlashAttention2,
|
768 |
+
"sdpa": Qwen2SdpaAttention,
|
769 |
+
}
|
770 |
+
|
771 |
+
|
772 |
+
class Qwen2DecoderLayer(nn.Module):
|
773 |
+
def __init__(self, config: Qwen2TSConfig, layer_idx: int):
|
774 |
+
super().__init__()
|
775 |
+
self.hidden_size = config.hidden_size
|
776 |
+
|
777 |
+
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
|
778 |
+
logger.warning_once(
|
779 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
780 |
+
"unexpected results may be encountered."
|
781 |
+
)
|
782 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
783 |
+
|
784 |
+
self.mlp = Qwen2MLP(config)
|
785 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
786 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
787 |
+
|
788 |
+
def forward(
|
789 |
+
self,
|
790 |
+
hidden_states: torch.Tensor,
|
791 |
+
attention_mask: Optional[torch.Tensor] = None,
|
792 |
+
position_ids: Optional[torch.LongTensor] = None,
|
793 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
794 |
+
output_attentions: Optional[bool] = False,
|
795 |
+
use_cache: Optional[bool] = False,
|
796 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
797 |
+
"""
|
798 |
+
Args:
|
799 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
800 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
801 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
802 |
+
output_attentions (`bool`, *optional*):
|
803 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
804 |
+
returned tensors for more detail.
|
805 |
+
use_cache (`bool`, *optional*):
|
806 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
807 |
+
(see `past_key_values`).
|
808 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
809 |
+
"""
|
810 |
+
|
811 |
+
residual = hidden_states
|
812 |
+
|
813 |
+
hidden_states = self.input_layernorm(hidden_states)
|
814 |
+
|
815 |
+
# Self Attention
|
816 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
817 |
+
hidden_states=hidden_states,
|
818 |
+
attention_mask=attention_mask,
|
819 |
+
position_ids=position_ids,
|
820 |
+
past_key_value=past_key_value,
|
821 |
+
output_attentions=output_attentions,
|
822 |
+
use_cache=use_cache,
|
823 |
+
)
|
824 |
+
hidden_states = residual + hidden_states
|
825 |
+
|
826 |
+
# Fully Connected
|
827 |
+
residual = hidden_states
|
828 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
829 |
+
hidden_states = self.mlp(hidden_states)
|
830 |
+
hidden_states = residual + hidden_states
|
831 |
+
|
832 |
+
outputs = (hidden_states,)
|
833 |
+
|
834 |
+
if output_attentions:
|
835 |
+
outputs += (self_attn_weights,)
|
836 |
+
|
837 |
+
if use_cache:
|
838 |
+
outputs += (present_key_value,)
|
839 |
+
|
840 |
+
return outputs
|
841 |
+
|
842 |
+
|
843 |
+
QWEN2_START_DOCSTRING = r"""
|
844 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
845 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
846 |
+
etc.)
|
847 |
+
|
848 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
849 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
850 |
+
and behavior.
|
851 |
+
|
852 |
+
Parameters:
|
853 |
+
config ([`Qwen2TSConfig`]):
|
854 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
855 |
+
load the weights associated with the model, only the configuration. Check out the
|
856 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
857 |
+
"""
|
858 |
+
|
859 |
+
|
860 |
+
@add_start_docstrings(
|
861 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
862 |
+
QWEN2_START_DOCSTRING,
|
863 |
+
)
|
864 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
865 |
+
config_class = Qwen2TSConfig
|
866 |
+
base_model_prefix = "model"
|
867 |
+
supports_gradient_checkpointing = True
|
868 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
869 |
+
_skip_keys_device_placement = "past_key_values"
|
870 |
+
_supports_flash_attn_2 = True
|
871 |
+
_supports_sdpa = True
|
872 |
+
_supports_cache_class = True
|
873 |
+
|
874 |
+
def _init_weights(self, module):
|
875 |
+
std = self.config.initializer_range
|
876 |
+
if isinstance(module, nn.Linear):
|
877 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
878 |
+
if module.bias is not None:
|
879 |
+
module.bias.data.zero_()
|
880 |
+
elif isinstance(module, nn.Embedding):
|
881 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
882 |
+
if module.padding_idx is not None:
|
883 |
+
module.weight.data[module.padding_idx].zero_()
|
884 |
+
|
885 |
+
|
886 |
+
class TSProjector(nn.Module):
|
887 |
+
def __init__(self, config: Qwen2TSConfig):
|
888 |
+
super().__init__()
|
889 |
+
self.config = config
|
890 |
+
self.linear_1 = nn.Linear(config.ts['d_model'], config.hidden_size, bias=True)
|
891 |
+
self.linear_2 = nn.LayerNorm(config.hidden_size, bias=True)
|
892 |
+
self.linear_3 = nn.Linear(config.hidden_size, config.hidden_size * 4, bias=True)
|
893 |
+
self.linear_4 = nn.LayerNorm(config.hidden_size * 4, bias=True)
|
894 |
+
self.act = nn.GELU()
|
895 |
+
|
896 |
+
def forward(self, ts_features):
|
897 |
+
hidden_states = self.linear_1(ts_features)
|
898 |
+
hidden_states = self.linear_2(hidden_states)
|
899 |
+
hidden_states = self.act(hidden_states)
|
900 |
+
hidden_states = self.linear_3(hidden_states)
|
901 |
+
hidden_states = self.linear_4(hidden_states)
|
902 |
+
hidden_states = hidden_states.reshape(hidden_states.size(0), -1, self.config.hidden_size)
|
903 |
+
return hidden_states
|
904 |
+
|
905 |
+
|
906 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
907 |
+
Args:
|
908 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
909 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
910 |
+
it.
|
911 |
+
|
912 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
913 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
914 |
+
|
915 |
+
[What are input IDs?](../glossary#input-ids)
|
916 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
917 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
918 |
+
|
919 |
+
- 1 for tokens that are **not masked**,
|
920 |
+
- 0 for tokens that are **masked**.
|
921 |
+
|
922 |
+
[What are attention masks?](../glossary#attention-mask)
|
923 |
+
|
924 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
925 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
926 |
+
|
927 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
928 |
+
`past_key_values`).
|
929 |
+
|
930 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
931 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
932 |
+
information on the default strategy.
|
933 |
+
|
934 |
+
- 1 indicates the head is **not masked**,
|
935 |
+
- 0 indicates the head is **masked**.
|
936 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
937 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
938 |
+
config.n_positions - 1]`.
|
939 |
+
|
940 |
+
[What are position IDs?](../glossary#position-ids)
|
941 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
942 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
943 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
944 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
945 |
+
|
946 |
+
Two formats are allowed:
|
947 |
+
- a [`~cache_utils.Cache`] instance;
|
948 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
949 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
950 |
+
cache format.
|
951 |
+
|
952 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
953 |
+
legacy cache format will be returned.
|
954 |
+
|
955 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
956 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
957 |
+
of shape `(batch_size, sequence_length)`.
|
958 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
959 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
960 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
961 |
+
model's internal embedding lookup matrix.
|
962 |
+
use_cache (`bool`, *optional*):
|
963 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
964 |
+
`past_key_values`).
|
965 |
+
output_attentions (`bool`, *optional*):
|
966 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
967 |
+
tensors for more detail.
|
968 |
+
output_hidden_states (`bool`, *optional*):
|
969 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
970 |
+
more detail.
|
971 |
+
return_dict (`bool`, *optional*):
|
972 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
973 |
+
"""
|
974 |
+
|
975 |
+
|
976 |
+
@add_start_docstrings(
|
977 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
978 |
+
QWEN2_START_DOCSTRING,
|
979 |
+
)
|
980 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
981 |
+
"""
|
982 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
983 |
+
|
984 |
+
Args:
|
985 |
+
config: Qwen2TSConfig
|
986 |
+
"""
|
987 |
+
|
988 |
+
def __init__(self, config: Qwen2TSConfig):
|
989 |
+
super().__init__(config)
|
990 |
+
self.padding_idx = config.pad_token_id
|
991 |
+
self.vocab_size = config.vocab_size
|
992 |
+
|
993 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
994 |
+
self.layers = nn.ModuleList(
|
995 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
996 |
+
)
|
997 |
+
self._attn_implementation = config._attn_implementation
|
998 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
999 |
+
|
1000 |
+
self.gradient_checkpointing = False
|
1001 |
+
|
1002 |
+
# Initialize weights and apply final processing
|
1003 |
+
self.post_init()
|
1004 |
+
|
1005 |
+
def get_input_embeddings(self):
|
1006 |
+
return self.embed_tokens
|
1007 |
+
|
1008 |
+
def set_input_embeddings(self, value):
|
1009 |
+
self.embed_tokens = value
|
1010 |
+
|
1011 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
1012 |
+
def forward(
|
1013 |
+
self,
|
1014 |
+
input_ids: torch.LongTensor = None,
|
1015 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1016 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1017 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1018 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1019 |
+
use_cache: Optional[bool] = None,
|
1020 |
+
output_attentions: Optional[bool] = None,
|
1021 |
+
output_hidden_states: Optional[bool] = None,
|
1022 |
+
return_dict: Optional[bool] = None,
|
1023 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1024 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1025 |
+
output_hidden_states = (
|
1026 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1027 |
+
)
|
1028 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1029 |
+
|
1030 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1031 |
+
|
1032 |
+
# retrieve input_ids and inputs_embeds
|
1033 |
+
if input_ids is not None and inputs_embeds is not None:
|
1034 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1035 |
+
elif input_ids is not None:
|
1036 |
+
batch_size, seq_length = input_ids.shape
|
1037 |
+
elif inputs_embeds is not None:
|
1038 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1039 |
+
else:
|
1040 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1041 |
+
|
1042 |
+
if self.gradient_checkpointing and self.training:
|
1043 |
+
if use_cache:
|
1044 |
+
logger.warning_once(
|
1045 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1046 |
+
)
|
1047 |
+
use_cache = False
|
1048 |
+
|
1049 |
+
past_key_values_length = 0
|
1050 |
+
|
1051 |
+
if use_cache:
|
1052 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1053 |
+
if use_legacy_cache:
|
1054 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1055 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1056 |
+
|
1057 |
+
if position_ids is None:
|
1058 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1059 |
+
position_ids = torch.arange(
|
1060 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1061 |
+
)
|
1062 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1063 |
+
else:
|
1064 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1065 |
+
|
1066 |
+
if inputs_embeds is None:
|
1067 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1068 |
+
|
1069 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1070 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1071 |
+
if is_padding_right:
|
1072 |
+
raise ValueError(
|
1073 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1074 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
|
1075 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
if self._attn_implementation == "flash_attention_2":
|
1079 |
+
# 2d mask is passed through the layers
|
1080 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1081 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1082 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1083 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1084 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1085 |
+
attention_mask,
|
1086 |
+
(batch_size, seq_length),
|
1087 |
+
inputs_embeds,
|
1088 |
+
past_key_values_length,
|
1089 |
+
sliding_window=self.config.sliding_window,
|
1090 |
+
)
|
1091 |
+
else:
|
1092 |
+
# 4d mask is passed through the layers
|
1093 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1094 |
+
attention_mask,
|
1095 |
+
(batch_size, seq_length),
|
1096 |
+
inputs_embeds,
|
1097 |
+
past_key_values_length,
|
1098 |
+
sliding_window=self.config.sliding_window,
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
hidden_states = inputs_embeds
|
1102 |
+
|
1103 |
+
# decoder layers
|
1104 |
+
all_hidden_states = () if output_hidden_states else None
|
1105 |
+
all_self_attns = () if output_attentions else None
|
1106 |
+
next_decoder_cache = None
|
1107 |
+
|
1108 |
+
for decoder_layer in self.layers:
|
1109 |
+
if output_hidden_states:
|
1110 |
+
all_hidden_states += (hidden_states,)
|
1111 |
+
|
1112 |
+
if self.gradient_checkpointing and self.training:
|
1113 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1114 |
+
decoder_layer.__call__,
|
1115 |
+
hidden_states,
|
1116 |
+
attention_mask,
|
1117 |
+
position_ids,
|
1118 |
+
past_key_values,
|
1119 |
+
output_attentions,
|
1120 |
+
use_cache,
|
1121 |
+
)
|
1122 |
+
else:
|
1123 |
+
layer_outputs = decoder_layer(
|
1124 |
+
hidden_states,
|
1125 |
+
attention_mask=attention_mask,
|
1126 |
+
position_ids=position_ids,
|
1127 |
+
past_key_value=past_key_values,
|
1128 |
+
output_attentions=output_attentions,
|
1129 |
+
use_cache=use_cache,
|
1130 |
+
)
|
1131 |
+
|
1132 |
+
hidden_states = layer_outputs[0]
|
1133 |
+
|
1134 |
+
if use_cache:
|
1135 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1136 |
+
|
1137 |
+
if output_attentions:
|
1138 |
+
all_self_attns += (layer_outputs[1],)
|
1139 |
+
|
1140 |
+
hidden_states = self.norm(hidden_states)
|
1141 |
+
|
1142 |
+
# add hidden states from the last decoder layer
|
1143 |
+
if output_hidden_states:
|
1144 |
+
all_hidden_states += (hidden_states,)
|
1145 |
+
|
1146 |
+
next_cache = None
|
1147 |
+
if use_cache:
|
1148 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1149 |
+
|
1150 |
+
if not return_dict:
|
1151 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1152 |
+
return BaseModelOutputWithPast(
|
1153 |
+
last_hidden_state=hidden_states,
|
1154 |
+
past_key_values=next_cache,
|
1155 |
+
hidden_states=all_hidden_states,
|
1156 |
+
attentions=all_self_attns,
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
|
1160 |
+
class Qwen2TSForCausalLM(Qwen2PreTrainedModel):
|
1161 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1162 |
+
|
1163 |
+
def __init__(self, config):
|
1164 |
+
super().__init__(config)
|
1165 |
+
self.config = config
|
1166 |
+
|
1167 |
+
self.model = Qwen2Model(config)
|
1168 |
+
self.vocab_size = config.vocab_size
|
1169 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1170 |
+
|
1171 |
+
# TS embedding
|
1172 |
+
self.ts_encoder = TimeSeriesEmbedding(config.ts)
|
1173 |
+
|
1174 |
+
# Initialize weights and apply final processing
|
1175 |
+
self.post_init()
|
1176 |
+
|
1177 |
+
def get_input_embeddings(self):
|
1178 |
+
return self.model.embed_tokens
|
1179 |
+
|
1180 |
+
def set_input_embeddings(self, value):
|
1181 |
+
self.model.embed_tokens = value
|
1182 |
+
|
1183 |
+
def get_output_embeddings(self):
|
1184 |
+
return self.lm_head
|
1185 |
+
|
1186 |
+
def set_output_embeddings(self, new_embeddings):
|
1187 |
+
self.lm_head = new_embeddings
|
1188 |
+
|
1189 |
+
def set_decoder(self, decoder):
|
1190 |
+
self.model = decoder
|
1191 |
+
|
1192 |
+
def get_decoder(self):
|
1193 |
+
return self.model
|
1194 |
+
|
1195 |
+
def _get_real_length(self, timeseries, input_ids):
|
1196 |
+
# Return the embed length after inserting timeseries features
|
1197 |
+
if timeseries is None:
|
1198 |
+
return input_ids.size(1)
|
1199 |
+
|
1200 |
+
num_time_steps = timeseries.size(1) * timeseries.size(2) // self.config.ts['num_features']
|
1201 |
+
num_patches = num_time_steps // self.config.ts['patch_size']
|
1202 |
+
special_ts_token_mask_start = input_ids == self.config.ts_token_start_index
|
1203 |
+
num_special_ts_tokens = torch.sum(special_ts_token_mask_start, dim=-1)
|
1204 |
+
return num_special_ts_tokens * (num_patches - 2) + input_ids.size(1)
|
1205 |
+
|
1206 |
+
def _get_original_length(self, timeseries, input_ids, past_length):
|
1207 |
+
"""
|
1208 |
+
根据转换后的 past_length 计算对应的原始序列长度,并返回包含的 <ts> 标记数量。
|
1209 |
+
|
1210 |
+
Args:
|
1211 |
+
timeseries (Tensor): 时间序列数据张量,形状为 (batch_size, num_time_steps)。
|
1212 |
+
input_ids (Tensor): 原始输入 IDs 张量,形状为 (batch_size, seq_length)。
|
1213 |
+
past_length (int 或 Tensor): 转换后的序列长度(包含插入的时间序列特征 token),可以是标量或形状为 (batch_size,) 的张量。
|
1214 |
+
|
1215 |
+
Returns:
|
1216 |
+
Tuple[Tensor, Tensor]:
|
1217 |
+
- original_length (Tensor): 每个样本对应的原始序列长度,形状为 (batch_size,)。
|
1218 |
+
- num_special_ts_tokens_within_past (Tensor): 每个样本在 past_length 范围内包含的 <ts> 标记数量,形状为 (batch_size,)。
|
1219 |
+
"""
|
1220 |
+
if timeseries is None:
|
1221 |
+
# 如果没有时间序列特征插入,原始长度等于 past_length
|
1222 |
+
if isinstance(past_length, int):
|
1223 |
+
original_length = torch.full((input_ids.size(0),), past_length, dtype=torch.long, device=input_ids.device)
|
1224 |
+
else:
|
1225 |
+
original_length = past_length
|
1226 |
+
num_special_ts_tokens_within_past = torch.zeros(input_ids.size(0), dtype=torch.long, device=input_ids.device)
|
1227 |
+
return original_length, num_special_ts_tokens_within_past
|
1228 |
+
|
1229 |
+
# 获取配置参数
|
1230 |
+
patch_size = self.config.ts['patch_size']
|
1231 |
+
num_patches = timeseries.size(1) * timeseries.size(2) // patch_size // self.config.ts['num_features']
|
1232 |
+
ts_token_start_index = self.config.ts_token_start_index
|
1233 |
+
|
1234 |
+
# 生成 mask,标识 <ts> token 的位置
|
1235 |
+
ts_mask = (input_ids == ts_token_start_index).long() # (batch_size, seq_length)
|
1236 |
+
|
1237 |
+
# 计算每个位置之前的 <ts> token 数量的累积和
|
1238 |
+
cumsum_ts = torch.cumsum(ts_mask, dim=1) # (batch_size, seq_length)
|
1239 |
+
|
1240 |
+
# 生成位置索引,从 1 开始
|
1241 |
+
seq_length = input_ids.size(1)
|
1242 |
+
positions = torch.arange(1, seq_length + 1, device=input_ids.device).unsqueeze(0).expand_as(input_ids) # (batch_size, seq_length)
|
1243 |
+
|
1244 |
+
# 计算转换后的位置
|
1245 |
+
transformed_length = positions + cumsum_ts * (num_patches - 2) # (batch_size, seq_length)
|
1246 |
+
|
1247 |
+
# 处理 past_length,可以是标量或张量
|
1248 |
+
if isinstance(past_length, int):
|
1249 |
+
past_length_tensor = torch.full((input_ids.size(0),), past_length, dtype=torch.long, device=input_ids.device)
|
1250 |
+
else:
|
1251 |
+
past_length_tensor = past_length.to(input_ids.device)
|
1252 |
+
|
1253 |
+
# 创建一个 mask,标识哪些原始位置在转换后不超过 past_length
|
1254 |
+
mask = transformed_length <= past_length_tensor.unsqueeze(1) # (batch_size, seq_length)
|
1255 |
+
|
1256 |
+
# 对每个样本,计算满足条件的位置数量,即原始长度
|
1257 |
+
original_length = torch.sum(mask, dim=1) # (batch_size,)
|
1258 |
+
|
1259 |
+
# 计算在 original_length 范围内包含的 <ts> 标记数量
|
1260 |
+
# 生成一个 mask,标识 original_length 范围内的 <ts> token
|
1261 |
+
# 首先生成一个位置索引
|
1262 |
+
original_positions = torch.arange(1, seq_length + 1, device=input_ids.device).unsqueeze(0).expand_as(input_ids) # (batch_size, seq_length)
|
1263 |
+
original_mask = original_positions <= original_length.unsqueeze(1) # (batch_size, seq_length)
|
1264 |
+
ts_within_original_mask = ts_mask.bool() & original_mask.bool() # (batch_size, seq_length)
|
1265 |
+
num_special_ts_tokens_within_past = torch.sum(ts_within_original_mask, dim=1) # (batch_size,)
|
1266 |
+
|
1267 |
+
# 确保 original_length 不为负数
|
1268 |
+
original_length = torch.clamp(original_length, min=0)
|
1269 |
+
|
1270 |
+
return original_length, num_special_ts_tokens_within_past
|
1271 |
+
|
1272 |
+
def _merge_input_ids_with_time_series_features(
|
1273 |
+
self, time_series_features, inputs_embeds, input_ids, attention_mask, labels, patch_cnt
|
1274 |
+
):
|
1275 |
+
total_time_steps, embed_dim = time_series_features.shape
|
1276 |
+
batch_size, sequence_length = input_ids.shape
|
1277 |
+
left_padding = False
|
1278 |
+
|
1279 |
+
# 1. Create a mask to know where special time series tokens are
|
1280 |
+
special_ts_token_mask_start = input_ids == self.config.ts_token_start_index
|
1281 |
+
special_ts_token_mask_end = input_ids == self.config.ts_token_end_index
|
1282 |
+
special_ts_token_mask = special_ts_token_mask_start | special_ts_token_mask_end
|
1283 |
+
# print("Special ts token mask:", special_ts_token_mask)
|
1284 |
+
num_special_ts_tokens = torch.sum(special_ts_token_mask_start, dim=-1)
|
1285 |
+
# Correctly calculate the total number of patches per batch
|
1286 |
+
num_total_patches = torch.zeros(batch_size, dtype=patch_cnt.dtype, device=patch_cnt.device)
|
1287 |
+
special_ts_token_mask_start_nonzero = special_ts_token_mask_start.nonzero()
|
1288 |
+
special_ts_token_mask_start_with_size = special_ts_token_mask_start.clone().long()
|
1289 |
+
patch_index = 0
|
1290 |
+
for i in range(batch_size):
|
1291 |
+
num_ts_in_batch = num_special_ts_tokens[i]
|
1292 |
+
num_total_patches[i] = patch_cnt[patch_index:patch_index + num_ts_in_batch].sum() - 2 * num_ts_in_batch
|
1293 |
+
for idx in range(patch_index, patch_index + num_ts_in_batch):
|
1294 |
+
batch_idx, seq_idx = special_ts_token_mask_start_nonzero[idx]
|
1295 |
+
special_ts_token_mask_start_with_size[batch_idx, seq_idx] *= (patch_cnt[idx].item() - 2)
|
1296 |
+
patch_index += num_ts_in_batch
|
1297 |
+
|
1298 |
+
# Compute the maximum embed dimension, considering both start and end tokens
|
1299 |
+
max_embed_dim = sequence_length + num_total_patches.max()
|
1300 |
+
|
1301 |
+
# batch_indices, non_ts_indices = torch.where(~special_ts_token_mask)
|
1302 |
+
batch_indices, non_ts_indices = torch.where(~special_ts_token_mask)
|
1303 |
+
# print("non_ts_indices:", non_ts_indices)
|
1304 |
+
# print("batch_indices:", batch_indices)
|
1305 |
+
|
1306 |
+
# 2. Compute the positions where text should be written
|
1307 |
+
new_token_positions = torch.cumsum((special_ts_token_mask_start_with_size + 1), dim=-1) - 1
|
1308 |
+
# print("new_token_positions", new_token_positions)
|
1309 |
+
nb_ts_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
1310 |
+
if left_padding:
|
1311 |
+
new_token_positions += nb_ts_pad[:, None] # offset for left padding
|
1312 |
+
text_to_overwrite = new_token_positions[batch_indices, non_ts_indices]
|
1313 |
+
# print('nb_ts_pad', nb_ts_pad)
|
1314 |
+
|
1315 |
+
# 3. Create the full embedding, already padded to the maximum position
|
1316 |
+
final_embedding = torch.zeros(
|
1317 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
1318 |
+
)
|
1319 |
+
final_attention_mask = torch.zeros(
|
1320 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
1321 |
+
)
|
1322 |
+
if labels is not None:
|
1323 |
+
final_labels = torch.full(
|
1324 |
+
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
1325 |
+
)
|
1326 |
+
target_device = inputs_embeds.device
|
1327 |
+
batch_indices, non_ts_indices, text_to_overwrite = (
|
1328 |
+
batch_indices.to(target_device),
|
1329 |
+
non_ts_indices.to(target_device),
|
1330 |
+
text_to_overwrite.to(target_device),
|
1331 |
+
)
|
1332 |
+
attention_mask = attention_mask.to(target_device)
|
1333 |
+
|
1334 |
+
# 4. Fill the embeddings based on the mask
|
1335 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_ts_indices]
|
1336 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_ts_indices]
|
1337 |
+
# print('final_attention_mask=', final_attention_mask)
|
1338 |
+
if labels is not None:
|
1339 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_ts_indices]
|
1340 |
+
|
1341 |
+
# 5. Fill the embeddings corresponding to the time series
|
1342 |
+
ts_to_overwrite = torch.full(
|
1343 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
1344 |
+
)
|
1345 |
+
ts_to_overwrite[batch_indices, text_to_overwrite] = False
|
1346 |
+
# print('ts_to_overwrite.long().cumsum(-1) - 1=', ts_to_overwrite.long().cumsum(-1) - 1)
|
1347 |
+
# print('nb_ts_pad=', nb_ts_pad[:, None])
|
1348 |
+
reversed_cumsum = ts_to_overwrite.flip(dims=[-1]).cumsum(-1).flip(dims=[-1]) - 1
|
1349 |
+
ts_to_overwrite &= reversed_cumsum >= nb_ts_pad[:, None].to(target_device)
|
1350 |
+
# print('ts_to_overwrite=', ts_to_overwrite)
|
1351 |
+
|
1352 |
+
if ts_to_overwrite.sum() != time_series_features.shape[:-1].numel():
|
1353 |
+
raise ValueError(
|
1354 |
+
f"The input provided to the model are wrong. The number of time series tokens is {torch.sum(special_ts_token_mask_start)} while"
|
1355 |
+
f" the number of time series given to the model is {len(patch_cnt)}. This prevents correct indexing and breaks batch generation."
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
final_embedding[ts_to_overwrite] = time_series_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
1359 |
+
# logger.warning(f"[DEBUG] {final_embedding[ts_to_overwrite][:, 0]=}")
|
1360 |
+
final_attention_mask |= ts_to_overwrite
|
1361 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
1362 |
+
|
1363 |
+
# 6. Mask out the embedding at padding positions
|
1364 |
+
batch_indices, pad_indices = torch.where(input_ids == self.config.pad_token_id)
|
1365 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
1366 |
+
|
1367 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
1368 |
+
|
1369 |
+
if labels is None:
|
1370 |
+
final_labels = None
|
1371 |
+
|
1372 |
+
return final_embedding, final_attention_mask, position_ids, final_labels
|
1373 |
+
|
1374 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
1375 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1376 |
+
def forward(
|
1377 |
+
self,
|
1378 |
+
input_ids: torch.LongTensor = None,
|
1379 |
+
timeseries: torch.FloatTensor = None,
|
1380 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1381 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1382 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1383 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1384 |
+
labels: Optional[torch.LongTensor] = None,
|
1385 |
+
use_cache: Optional[bool] = None,
|
1386 |
+
output_attentions: Optional[bool] = None,
|
1387 |
+
output_hidden_states: Optional[bool] = None,
|
1388 |
+
return_dict: Optional[bool] = None,
|
1389 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1390 |
+
r"""
|
1391 |
+
Args:
|
1392 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1393 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1394 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1395 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1396 |
+
|
1397 |
+
Returns:
|
1398 |
+
|
1399 |
+
Example:
|
1400 |
+
|
1401 |
+
```python
|
1402 |
+
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
1403 |
+
|
1404 |
+
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1405 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1406 |
+
|
1407 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1408 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1409 |
+
|
1410 |
+
>>> # Generate
|
1411 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1412 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1413 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1414 |
+
```"""
|
1415 |
+
|
1416 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1417 |
+
output_hidden_states = (
|
1418 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1419 |
+
)
|
1420 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1421 |
+
|
1422 |
+
if inputs_embeds is None:
|
1423 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
1424 |
+
|
1425 |
+
if timeseries is not None and timeseries.shape[0] > 0:
|
1426 |
+
use_cache = False
|
1427 |
+
# print(f"[DEBUG] input timeseries.shape: {timeseries.shape}")
|
1428 |
+
|
1429 |
+
# 调用 ts_encoder,并打印输入和输出的形状
|
1430 |
+
ts_features, patch_cnt = self.ts_encoder(timeseries)
|
1431 |
+
# print(f"[DEBUG] ts_features.shape: {ts_features.shape}")
|
1432 |
+
# print(f"[DEBUG] patch_cnt: {patch_cnt}")
|
1433 |
+
|
1434 |
+
inputs_embeds = inputs_embeds.to(ts_features.dtype)
|
1435 |
+
|
1436 |
+
# 在合并前打印相关形状
|
1437 |
+
# print(f"[DEBUG] Before merging:")
|
1438 |
+
# print(f"{inputs_embeds[0, -5:, :5]=}")
|
1439 |
+
# print(f"{attention_mask.sum()=}")
|
1440 |
+
# print(f" inputs_embeds.shape: {inputs_embeds.shape}")
|
1441 |
+
# print(f" input_ids.shape: {input_ids.shape}")
|
1442 |
+
# print(f" attention_mask.shape: {attention_mask.shape}")
|
1443 |
+
# if labels is not None:
|
1444 |
+
# print(f" labels.shape: {labels.shape}")
|
1445 |
+
# else:
|
1446 |
+
# print(f" labels: None")
|
1447 |
+
# print(f" patch_cnt.shape: {patch_cnt.shape}")
|
1448 |
+
|
1449 |
+
# 调用 _merge_input_ids_with_time_series_features,并打印输出的形状
|
1450 |
+
inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_time_series_features(
|
1451 |
+
ts_features, inputs_embeds, input_ids, attention_mask, labels, patch_cnt
|
1452 |
+
)
|
1453 |
+
|
1454 |
+
# print(f"[DEBUG] After merging:")
|
1455 |
+
# print(f" inputs_embeds.shape: {inputs_embeds.shape}")
|
1456 |
+
# print(f" attention_mask.shape: {attention_mask.shape}")
|
1457 |
+
# print(f"{attention_mask.sum()=}")
|
1458 |
+
# print(f"{inputs_embeds[0, -5:, :5]=}")
|
1459 |
+
|
1460 |
+
# print(f" position_ids.shape: {position_ids.shape}")
|
1461 |
+
# if labels is not None:
|
1462 |
+
# print(f" labels.shape: {labels.shape}")
|
1463 |
+
# else:
|
1464 |
+
# print(f" labels: None")
|
1465 |
+
|
1466 |
+
# 继续模型的前向传播
|
1467 |
+
outputs = self.model(
|
1468 |
+
attention_mask=attention_mask,
|
1469 |
+
position_ids=position_ids,
|
1470 |
+
past_key_values=past_key_values,
|
1471 |
+
inputs_embeds=inputs_embeds,
|
1472 |
+
use_cache=use_cache,
|
1473 |
+
output_attentions=output_attentions,
|
1474 |
+
output_hidden_states=output_hidden_states,
|
1475 |
+
return_dict=return_dict,
|
1476 |
+
)
|
1477 |
+
|
1478 |
+
hidden_states = outputs[0]
|
1479 |
+
logits = self.lm_head(hidden_states)
|
1480 |
+
logits = logits.float()
|
1481 |
+
|
1482 |
+
loss = None
|
1483 |
+
if labels is not None:
|
1484 |
+
# Shift so that tokens < n predict n
|
1485 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1486 |
+
shift_labels = labels[..., 1:].contiguous()
|
1487 |
+
# Flatten the tokens
|
1488 |
+
loss_fct = CrossEntropyLoss()
|
1489 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1490 |
+
shift_labels = shift_labels.view(-1)
|
1491 |
+
# Enable model parallelism
|
1492 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1493 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1494 |
+
|
1495 |
+
if not return_dict:
|
1496 |
+
output = (logits,) + outputs[1:]
|
1497 |
+
return (loss,) + output if loss is not None else output
|
1498 |
+
|
1499 |
+
return CausalLMOutputWithPast(
|
1500 |
+
loss=loss,
|
1501 |
+
logits=logits,
|
1502 |
+
past_key_values=outputs.past_key_values,
|
1503 |
+
hidden_states=outputs.hidden_states,
|
1504 |
+
attentions=outputs.attentions,
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
|
1508 |
+
def prepare_inputs_for_generation(
|
1509 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, timeseries=None, **kwargs
|
1510 |
+
):
|
1511 |
+
# Omit tokens covered by past_key_values
|
1512 |
+
if past_key_values is not None:
|
1513 |
+
if isinstance(past_key_values, Cache):
|
1514 |
+
cache_length = past_key_values.get_seq_length()
|
1515 |
+
past_length = past_key_values.seen_tokens
|
1516 |
+
max_cache_length = past_key_values.get_max_length()
|
1517 |
+
else:
|
1518 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1519 |
+
max_cache_length = None
|
1520 |
+
|
1521 |
+
# print(f"[prepare_inputs_for_generation] {cache_length=}, {past_length=}, {max_cache_length=}")
|
1522 |
+
|
1523 |
+
# Keep only the unprocessed tokens:
|
1524 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1525 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1526 |
+
# input)
|
1527 |
+
real_len = self._get_real_length(timeseries, input_ids)
|
1528 |
+
origin_past_len, past_num_ts = self._get_original_length(timeseries, input_ids, past_length)
|
1529 |
+
if attention_mask is not None and attention_mask.shape[1] > real_len:
|
1530 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1531 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1532 |
+
# input_ids based on the past_length.
|
1533 |
+
elif past_length < real_len:
|
1534 |
+
input_ids = input_ids[:, origin_past_len:]
|
1535 |
+
if timeseries is not None:
|
1536 |
+
timeseries = timeseries[past_num_ts:]
|
1537 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1538 |
+
|
1539 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1540 |
+
if (
|
1541 |
+
max_cache_length is not None
|
1542 |
+
and attention_mask is not None
|
1543 |
+
and cache_length + input_ids.size(1) > max_cache_length
|
1544 |
+
):
|
1545 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1546 |
+
|
1547 |
+
position_ids = kwargs.get("position_ids", None)
|
1548 |
+
if attention_mask is not None and position_ids is None:
|
1549 |
+
# create position_ids on the fly for batch generation
|
1550 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1551 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1552 |
+
if past_key_values:
|
1553 |
+
position_ids = position_ids[:, -input_ids.size(1) :]
|
1554 |
+
|
1555 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1556 |
+
if inputs_embeds is not None and past_key_values is None:
|
1557 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1558 |
+
else:
|
1559 |
+
model_inputs = {"input_ids": input_ids}
|
1560 |
+
|
1561 |
+
model_inputs.update(
|
1562 |
+
{
|
1563 |
+
"position_ids": position_ids,
|
1564 |
+
"past_key_values": past_key_values,
|
1565 |
+
"use_cache": kwargs.get("use_cache"),
|
1566 |
+
"attention_mask": attention_mask,
|
1567 |
+
"timeseries": timeseries
|
1568 |
+
}
|
1569 |
+
)
|
1570 |
+
return model_inputs
|
1571 |
+
|
1572 |
+
@staticmethod
|
1573 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1574 |
+
reordered_past = ()
|
1575 |
+
for layer_past in past_key_values:
|
1576 |
+
reordered_past += (
|
1577 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1578 |
+
)
|
1579 |
+
return reordered_past
|
1580 |
+
|
1581 |
+
|
1582 |
+
@add_start_docstrings(
|
1583 |
+
"""
|
1584 |
+
The Qwen2 Model transformer with a sequence classification head on top (linear layer).
|
1585 |
+
|
1586 |
+
[`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1587 |
+
(e.g. GPT-2) do.
|
1588 |
+
|
1589 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1590 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1591 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1592 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1593 |
+
each row of the batch).
|
1594 |
+
""",
|
1595 |
+
QWEN2_START_DOCSTRING,
|
1596 |
+
)
|
1597 |
+
class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
|
1598 |
+
def __init__(self, config):
|
1599 |
+
super().__init__(config)
|
1600 |
+
self.num_labels = config.num_labels
|
1601 |
+
self.model = Qwen2Model(config)
|
1602 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1603 |
+
|
1604 |
+
# Initialize weights and apply final processing
|
1605 |
+
self.post_init()
|
1606 |
+
|
1607 |
+
def get_input_embeddings(self):
|
1608 |
+
return self.model.embed_tokens
|
1609 |
+
|
1610 |
+
def set_input_embeddings(self, value):
|
1611 |
+
self.model.embed_tokens = value
|
1612 |
+
|
1613 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
1614 |
+
def forward(
|
1615 |
+
self,
|
1616 |
+
input_ids: torch.LongTensor = None,
|
1617 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1618 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1619 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1620 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1621 |
+
labels: Optional[torch.LongTensor] = None,
|
1622 |
+
use_cache: Optional[bool] = None,
|
1623 |
+
output_attentions: Optional[bool] = None,
|
1624 |
+
output_hidden_states: Optional[bool] = None,
|
1625 |
+
return_dict: Optional[bool] = None,
|
1626 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1627 |
+
r"""
|
1628 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1629 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1630 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1631 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1632 |
+
"""
|
1633 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1634 |
+
|
1635 |
+
transformer_outputs = self.model(
|
1636 |
+
input_ids,
|
1637 |
+
attention_mask=attention_mask,
|
1638 |
+
position_ids=position_ids,
|
1639 |
+
past_key_values=past_key_values,
|
1640 |
+
inputs_embeds=inputs_embeds,
|
1641 |
+
use_cache=use_cache,
|
1642 |
+
output_attentions=output_attentions,
|
1643 |
+
output_hidden_states=output_hidden_states,
|
1644 |
+
return_dict=return_dict,
|
1645 |
+
)
|
1646 |
+
hidden_states = transformer_outputs[0]
|
1647 |
+
logits = self.score(hidden_states)
|
1648 |
+
|
1649 |
+
if input_ids is not None:
|
1650 |
+
batch_size = input_ids.shape[0]
|
1651 |
+
else:
|
1652 |
+
batch_size = inputs_embeds.shape[0]
|
1653 |
+
|
1654 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1655 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1656 |
+
if self.config.pad_token_id is None:
|
1657 |
+
sequence_lengths = -1
|
1658 |
+
else:
|
1659 |
+
if input_ids is not None:
|
1660 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1661 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1662 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1663 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1664 |
+
else:
|
1665 |
+
sequence_lengths = -1
|
1666 |
+
|
1667 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1668 |
+
|
1669 |
+
loss = None
|
1670 |
+
if labels is not None:
|
1671 |
+
labels = labels.to(logits.device)
|
1672 |
+
if self.config.problem_type is None:
|
1673 |
+
if self.num_labels == 1:
|
1674 |
+
self.config.problem_type = "regression"
|
1675 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1676 |
+
self.config.problem_type = "single_label_classification"
|
1677 |
+
else:
|
1678 |
+
self.config.problem_type = "multi_label_classification"
|
1679 |
+
|
1680 |
+
if self.config.problem_type == "regression":
|
1681 |
+
loss_fct = MSELoss()
|
1682 |
+
if self.num_labels == 1:
|
1683 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1684 |
+
else:
|
1685 |
+
loss = loss_fct(pooled_logits, labels)
|
1686 |
+
elif self.config.problem_type == "single_label_classification":
|
1687 |
+
loss_fct = CrossEntropyLoss()
|
1688 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1689 |
+
elif self.config.problem_type == "multi_label_classification":
|
1690 |
+
loss_fct = BCEWithLogitsLoss()
|
1691 |
+
loss = loss_fct(pooled_logits, labels)
|
1692 |
+
if not return_dict:
|
1693 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1694 |
+
return ((loss,) + output) if loss is not None else output
|
1695 |
+
|
1696 |
+
return SequenceClassifierOutputWithPast(
|
1697 |
+
loss=loss,
|
1698 |
+
logits=pooled_logits,
|
1699 |
+
past_key_values=transformer_outputs.past_key_values,
|
1700 |
+
hidden_states=transformer_outputs.hidden_states,
|
1701 |
+
attentions=transformer_outputs.attentions,
|
1702 |
+
)
|
pytorch_model-00001-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83a53e7d1a251f3b98011ab11d444925ca258396b3bb9f8666e86e526a55946f
|
3 |
+
size 4986229446
|
pytorch_model-00002-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51e7a8f7dd02f15c748419734c081fbbe694ff545415b2de298904094db14f31
|
3 |
+
size 4954871698
|
pytorch_model-00003-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acefeb6c407b39e909f6c4a3f5e2e7f721ba4242396a0b6628d7e9716009c6ba
|
3 |
+
size 4954871762
|
pytorch_model-00004-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:add7c02bd933343327595571db05da2f3fe91cce9874238eb9b245ec28a72131
|
3 |
+
size 4954871762
|
pytorch_model-00005-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b7bf3b267657166ebb79aa8cf7980ae6da30aed5e0577345684955d7150c1c6
|
3 |
+
size 4954871762
|
pytorch_model-00006-of-00006.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e9abb8fce6a951e2c953f96043dc42c7d0b2a0376a3c77499f265c09abe5649
|
3 |
+
size 4944481872
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29749997568
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00006-of-00006.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00006.bin",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00006.bin",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00006.bin",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
20 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00006.bin",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00006.bin",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00006.bin",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
32 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
44 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
56 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
68 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
80 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
92 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
104 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
116 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
128 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
140 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
152 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00006.bin",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00006.bin",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00006.bin",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
164 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
176 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
188 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
200 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
212 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "pytorch_model-00003-of-00006.bin",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "pytorch_model-00003-of-00006.bin",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "pytorch_model-00003-of-00006.bin",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
|
224 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
236 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
248 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
260 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
272 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
284 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00006.bin",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00006.bin",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00006.bin",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
296 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
308 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
320 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
332 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "pytorch_model-00004-of-00006.bin",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "pytorch_model-00004-of-00006.bin",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "pytorch_model-00004-of-00006.bin",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
|
344 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
356 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
368 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
380 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
392 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
404 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
416 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00006.bin",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00006.bin",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00006.bin",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
428 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
440 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
452 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "pytorch_model-00005-of-00006.bin",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "pytorch_model-00005-of-00006.bin",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "pytorch_model-00005-of-00006.bin",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
|
464 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "pytorch_model-00006-of-00006.bin",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "pytorch_model-00006-of-00006.bin",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "pytorch_model-00006-of-00006.bin",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
|
476 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "pytorch_model-00006-of-00006.bin",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "pytorch_model-00006-of-00006.bin",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "pytorch_model-00006-of-00006.bin",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
|
488 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "pytorch_model-00006-of-00006.bin",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "pytorch_model-00006-of-00006.bin",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "pytorch_model-00006-of-00006.bin",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
|
500 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "pytorch_model-00006-of-00006.bin",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "pytorch_model-00006-of-00006.bin",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "pytorch_model-00006-of-00006.bin",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
|
512 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "pytorch_model-00006-of-00006.bin",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "pytorch_model-00006-of-00006.bin",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "pytorch_model-00006-of-00006.bin",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
|
524 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
525 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
|
526 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
|
527 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
|
528 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
|
529 |
+
"model.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00006.bin",
|
530 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
531 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
532 |
+
"model.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00006.bin",
|
533 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
534 |
+
"model.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00006.bin",
|
535 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
536 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
537 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
538 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
539 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
540 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
541 |
+
"model.layers.6.self_attn.k_proj.bias": "pytorch_model-00001-of-00006.bin",
|
542 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
|
543 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
|
544 |
+
"model.layers.6.self_attn.q_proj.bias": "pytorch_model-00001-of-00006.bin",
|
545 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
|
546 |
+
"model.layers.6.self_attn.v_proj.bias": "pytorch_model-00001-of-00006.bin",
|
547 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
|
548 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
549 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
550 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
551 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
552 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
553 |
+
"model.layers.7.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
554 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
555 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
556 |
+
"model.layers.7.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
557 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
558 |
+
"model.layers.7.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
559 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
560 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
561 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
562 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
563 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
564 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
565 |
+
"model.layers.8.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
566 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
567 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
568 |
+
"model.layers.8.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
569 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
570 |
+
"model.layers.8.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
571 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
572 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
573 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
|
574 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
|
575 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
|
576 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
|
577 |
+
"model.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00006.bin",
|
578 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
|
579 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
|
580 |
+
"model.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00006.bin",
|
581 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
|
582 |
+
"model.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00006.bin",
|
583 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
|
584 |
+
"model.norm.weight": "pytorch_model-00006-of-00006.bin",
|
585 |
+
"ts_encoder.mlp.0.bias": "pytorch_model-00006-of-00006.bin",
|
586 |
+
"ts_encoder.mlp.0.weight": "pytorch_model-00006-of-00006.bin",
|
587 |
+
"ts_encoder.mlp.2.bias": "pytorch_model-00006-of-00006.bin",
|
588 |
+
"ts_encoder.mlp.2.weight": "pytorch_model-00006-of-00006.bin",
|
589 |
+
"ts_encoder.mlp.4.bias": "pytorch_model-00006-of-00006.bin",
|
590 |
+
"ts_encoder.mlp.4.weight": "pytorch_model-00006-of-00006.bin",
|
591 |
+
"ts_encoder.mlp.6.bias": "pytorch_model-00006-of-00006.bin",
|
592 |
+
"ts_encoder.mlp.6.weight": "pytorch_model-00006-of-00006.bin",
|
593 |
+
"ts_encoder.mlp.8.bias": "pytorch_model-00006-of-00006.bin",
|
594 |
+
"ts_encoder.mlp.8.weight": "pytorch_model-00006-of-00006.bin"
|
595 |
+
}
|
596 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<ts>",
|
4 |
+
"<ts/>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:309a7f94e51f1104e6687b31284915a0349755302b483d851f466650dc2ebc67
|
3 |
+
size 11422259
|
tokenizer_config.json
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<ts>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": true
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "<ts/>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": true
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"additional_special_tokens": [
|
199 |
+
"<ts>",
|
200 |
+
"<ts/>"
|
201 |
+
],
|
202 |
+
"bos_token": null,
|
203 |
+
"chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
|
204 |
+
"clean_up_tokenization_spaces": false,
|
205 |
+
"eos_token": "<|im_end|>",
|
206 |
+
"errors": "replace",
|
207 |
+
"model_max_length": 131072,
|
208 |
+
"pad_token": "<|endoftext|>",
|
209 |
+
"padding_side": "right",
|
210 |
+
"split_special_tokens": false,
|
211 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
212 |
+
"unk_token": null
|
213 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|