byroneverson commited on
Commit
332d34b
·
verified ·
1 Parent(s): 40832f4

Upload folder using huggingface_hub

Browse files
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ *venv
2
+ *.DS_Store
3
+ *.idea/
LICENSE ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The glm-4-9b License
2
+
3
+ 1. 定义
4
+
5
+ “许可方”是指分发其软件的 glm-4-9b 模型团队。
6
+ “软件”是指根据本许可提供的 glm-4-9b 模型参数。
7
+
8
+ 2. 许可授予
9
+
10
+ 根据本许可的条款和条件,许可方特此授予您非排他性、全球性、不可转让、不可再许可、可撤销、免版税的版权许可。
11
+ 本许可允许您免费使用本仓库中的所有开源模型进行学术研究,对于希望将模型用于商业目的的用户,需在[这里](https://open.bigmodel.cn/mla/form)完成登记。经过登记的用户可以免费使用本模型进行商业活动,但必须遵守本许可的所有条款和条件。
12
+ 上述版权声明和本许可声明应包含在本软件的所有副本或重要部分中。
13
+ 如果您分发或提供 THUDM / 智谱AI 关于 glm-4 开源模型的材料(或其任何衍生作品),或使用其中任何材料(包括 glm-4 系列的所有开源模型)的产品或服务,您应:
14
+
15
+ (A) 随任何此类 THUDM / 智谱AI 材料提供本协议的副本;
16
+ (B) 在相关网站、用户界面、博客文章、关于页面或产品文档上突出显示 “Built with glm-4”。
17
+ 如果您使用 THUDM / 智谱AI的 glm-4 开源模型的材料来创建、训练、微调或以其他方式改进已分发或可用的 AI 模型,您还应在任何此类 AI 模型名称的开头添加 “glm-4”。
18
+
19
+ 3. 限制
20
+
21
+ 您不得出于任何军事或非法目的使用、复制、修改、合并、发布、分发、复制或创建本软件的全部或部分衍生作品。
22
+ 您不得利用本软件从事任何危害国家安全和国家统一,危害社会公共利益及公序良俗,侵犯他人商业秘密、知识产权、名誉权、肖像权、财产权等权益的行为。
23
+ 您在使用中应遵循使用地所适用的法律法规政策、道德规范等要求。
24
+
25
+ 4. 免责声明
26
+
27
+ 本软件“按原样”提供,不提供任何明示或暗示的保证,包括但不限于对适销性、特定用途的适用性和非侵权性的保证。
28
+ 在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同诉讼、侵权行为还是其他方面,由软件或软件的使用或其他交易引起、由软件引起或与之相关
29
+ 软件。
30
+
31
+ 5. 责任限制
32
+
33
+ 除适用法律禁止的范围外,在任何情况下且根据任何法律理论,无论是基于侵权行为、疏忽、合同、责任或其他原因,任何许可方均不对您承担任何直接、间接、特殊、偶然、示范性、
34
+ 或间接损害,或任何其他商业损失,即使许可人已被告知此类损害的可能性。
35
+
36
+ 6. 争议解决
37
+
38
+ 本许可受中华人民共和国法律管辖并按其解释。 因本许可引起的或与本许可有关的任何争议应提交北京市海淀区人民法院。
39
+ 请注意,许可证可能会更新到更全面的版本。 有关许可和版权的任何问题,请通过 [email protected] 与我们联系。
40
+
41
+ 1. Definitions
42
+
43
+ “Licensor” means the glm-4-9b Model Team that distributes its Software.
44
+ “Software” means the glm-4-9b model parameters made available under this license.
45
+
46
+ 2. License
47
+
48
+ Under the terms and conditions of this license, the Licensor hereby grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty-free copyright license.
49
+ This license allows you to use all open source models in this repository for free for academic research. For users who wish to use the models for commercial purposes, please do so [here](https://open.bigmodel.cn/mla/form)
50
+ Complete registration. Registered users are free to use this model for commercial activities, but must comply with all terms and conditions of this license.
51
+ The copyright notice and this license notice shall be included in all copies or substantial portions of the Software.
52
+ If you distribute or provide THUDM / Zhipu AI materials on the glm-4 open source model (or any derivative works thereof), or products or services that use any materials therein (including all open source models of the glm-4 series), you should:
53
+
54
+ (A) Provide a copy of this Agreement with any such THUDM/Zhipu AI Materials;
55
+ (B) Prominently display "Built with glm-4" on the relevant website, user interface, blog post, related page or product documentation.
56
+ If you use materials from THUDM/Zhipu AI's glm-4 model to create, train, operate, or otherwise improve assigned or available AI models, you should also add "glm-4" to the beginning of any such AI model name.
57
+
58
+ 3. Restrictions
59
+
60
+ You are not allowed to use, copy, modify, merge, publish, distribute, copy or create all or part of the derivative works of this software for any military or illegal purposes.
61
+ You are not allowed to use this software to engage in any behavior that endangers national security and unity, endangers social public interests and public order, infringes on the rights and interests of others such as trade secrets, intellectual property rights, reputation rights, portrait rights, and property rights.
62
+ You should comply with the applicable laws, regulations, policies, ethical standards, and other requirements in the place of use during use.
63
+
64
+ 4. Disclaimer
65
+
66
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
67
+ WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
68
+ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
69
+ OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
70
+
71
+ 5. Limitation of Liability
72
+
73
+ EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER BASED IN TORT,
74
+ NEGLIGENCE, CONTRACT, LIABILITY, OR OTHERWISE WILL ANY LICENSOR BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT, SPECIAL,
75
+ INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES, OR ANY OTHER COMMERCIAL LOSSES, EVEN IF THE LICENSOR HAS BEEN ADVISED
76
+ OF THE POSSIBILITY OF SUCH DAMAGES.
77
+
78
+ 6. Dispute Resolution
79
+
80
+ This license shall be governed and construed in accordance with the laws of People’s Republic of China. Any dispute
81
+ arising from or in connection with this License shall be submitted to Haidian District People's Court in Beijing.
82
+
83
+ Note that the license is subject to update to a more comprehensive version. For any questions related to the license and
84
+ copyright, please contact us at [email protected].
README.md CHANGED
@@ -1,3 +1,170 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: glm-4
4
+ license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
5
+ language:
6
+ - zh
7
+ - en
8
+ tags:
9
+ - glm
10
+ - chatglm
11
+ - thudm
12
+ inference: false
13
+ ---
14
+
15
+ # GLM-4-9B-Chat
16
+
17
+ Read this in [English](README_en.md).
18
+
19
+ **2024/08/12, 本仓库代码已更新并使用 `transforemrs>=4.44.0`, 请及时更新依赖。**
20
+
21
+ **2024/07/24,我们发布了与长文本相关的最新技术解读,关注 [这里](https://medium.com/@ChatGLM/glm-long-scaling-pre-trained-model-contexts-to-millions-caa3c48dea85) 查看我们在训练 GLM-4-9B 开源模型中关于长文本技术的技术报告**
22
+
23
+ ## 模型介绍
24
+ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。
25
+ 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。
26
+ 除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K
27
+ 上下文)等高级功能。
28
+ 本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。
29
+
30
+ ## 评测结果
31
+
32
+ 我们在一些经典任务上对 GLM-4-9B-Chat 模型进行了评测,并得到了如下的结果:
33
+
34
+ | Model | AlignBench-v2 | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NCB |
35
+ |:--------------------|:-------------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----:|
36
+ | Llama-3-8B-Instruct | 5.12 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
37
+ | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
38
+ | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
39
+
40
+ ### 长文本
41
+
42
+ 在 1M 的上下文长度下进行[大海捞针实验](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py),结果如下:
43
+
44
+ ![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg)
45
+
46
+ 在 LongBench-Chat 上对长文本能力进行了进一步评测,结果如下:
47
+
48
+ ![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png)
49
+
50
+ ### 多语言能力
51
+
52
+ 在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表
53
+
54
+ | Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages
55
+ |:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
56
+ | M-MMLU | 49.6 | 56.6 | all
57
+ | FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no
58
+ | MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th
59
+ | XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt
60
+ | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te
61
+ | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi
62
+
63
+ ### 工具调用能力
64
+
65
+ 我们在 [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard)
66
+ 上进行了测试并得到了以下结果:
67
+
68
+ | Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
69
+ |:-----------------------|:------------:|:-----------:|:------------:|:---------:|
70
+ | Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
71
+ | gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
72
+ | ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
73
+ | GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
74
+
75
+ **本仓库是 GLM-4-9B-Chat 的模型仓库,支持`128K`上下文长度。**
76
+
77
+ ## 运行模型
78
+
79
+ **更多推理代码和依赖信息,请访问我们的 [github](https://github.com/THUDM/GLM-4)。**
80
+
81
+ **请严格按照[依赖](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt)安装,否则无法正常运行。**
82
+
83
+ ### 使用 transformers 后端进行推理:
84
+
85
+
86
+ ```python
87
+ import torch
88
+ from transformers import AutoModelForCausalLM, AutoTokenizer
89
+
90
+ device = "cuda"
91
+
92
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
93
+
94
+ query = "你好"
95
+
96
+ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
97
+ add_generation_prompt=True,
98
+ tokenize=True,
99
+ return_tensors="pt",
100
+ return_dict=True
101
+ )
102
+
103
+ inputs = inputs.to(device)
104
+ model = AutoModelForCausalLM.from_pretrained(
105
+ "THUDM/glm-4-9b-chat",
106
+ torch_dtype=torch.bfloat16,
107
+ low_cpu_mem_usage=True,
108
+ trust_remote_code=True
109
+ ).to(device).eval()
110
+
111
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
112
+ with torch.no_grad():
113
+ outputs = model.generate(**inputs, **gen_kwargs)
114
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
115
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
116
+ ```
117
+
118
+ 使用 vLLM后端进行推理:
119
+
120
+ ```python
121
+ from transformers import AutoTokenizer
122
+ from vllm import LLM, SamplingParams
123
+
124
+ # GLM-4-9B-Chat-1M
125
+ # max_model_len, tp_size = 1048576, 4
126
+
127
+ # GLM-4-9B-Chat
128
+ # 如果遇见 OOM 现象,建议减少max_model_len,或者增加tp_size
129
+ max_model_len, tp_size = 131072, 1
130
+ model_name = "THUDM/glm-4-9b-chat"
131
+ prompt = [{"role": "user", "content": "你好"}]
132
+
133
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
134
+ llm = LLM(
135
+ model=model_name,
136
+ tensor_parallel_size=tp_size,
137
+ max_model_len=max_model_len,
138
+ trust_remote_code=True,
139
+ enforce_eager=True,
140
+ # GLM-4-9B-Chat-1M 如果遇见 OOM 现象,建议开启下述参数
141
+ # enable_chunked_prefill=True,
142
+ # max_num_batched_tokens=8192
143
+ )
144
+ stop_token_ids = [151329, 151336, 151338]
145
+ sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
146
+
147
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
148
+ outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
149
+
150
+ print(outputs[0].outputs[0].text)
151
+ ```
152
+
153
+ ## 协议
154
+
155
+ GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
156
+
157
+ ## 引用
158
+
159
+ 如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
160
+
161
+ ```
162
+ @misc{glm2024chatglm,
163
+ title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools},
164
+ author={Team GLM and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
165
+ year={2024},
166
+ eprint={2406.12793},
167
+ archivePrefix={arXiv},
168
+ primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
169
+ }
170
+ ```
README_en.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GLM-4-9B-Chat
2
+
3
+ **2024/08/12, The repository code has been updated and now requires `transformers>=4.44.0`. Please update your dependencies accordingly.**
4
+
5
+ **On July 24, 2024, we released the latest technical interpretation related to long texts. Check
6
+ out [here](https://medium.com/@ChatGLM/glm-long-scaling-pre-trained-model-contexts-to-millions-caa3c48dea85) to view our
7
+ technical report on long context technology in the training of the open-source GLM-4-9B model.**
8
+
9
+ ## Model Introduction
10
+
11
+ GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
12
+ AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
13
+ and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
14
+ addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
15
+ custom tool calls (Function Call), and long context
16
+ reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
17
+ languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
18
+ context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
19
+ **GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
20
+ In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
21
+ text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
22
+ GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
23
+
24
+ ## Benchmark
25
+
26
+ We evaluated the GLM-4-9B-Chat model on some classic tasks and obtained the following results:
27
+
28
+ | Model | AlignBench-v2 | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NCB |
29
+ |:--------------------|:-------------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----:|
30
+ | Llama-3-8B-Instruct | 5.12 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
31
+ | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
32
+ | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
33
+
34
+ ### Long Context
35
+
36
+ The [eval_needle experiment](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py) was conducted with
37
+ a context length of 1M, and the results are as follows:
38
+
39
+ ![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg)
40
+
41
+ The long text capability was further evaluated on LongBench, and the results are as follows:
42
+
43
+ ![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png)
44
+
45
+ ### Multi Language
46
+
47
+ The tests for GLM-4-9B-Chat and Llama-3-8B-Instruct are conducted on six multilingual datasets. The test results and the
48
+ corresponding languages selected for each dataset are shown in the table below:
49
+
50
+ | Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
51
+ |:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
52
+ | M-MMLU | 49.6 | 56.6 | all |
53
+ | FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
54
+ | MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
55
+ | XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
56
+ | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
57
+ | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
58
+
59
+ ### Function Call
60
+
61
+ Tested
62
+ on [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard).
63
+
64
+ | Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
65
+ |:-----------------------|:------------:|:-----------:|:------------:|:---------:|
66
+ | Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
67
+ | gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
68
+ | ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
69
+ | GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
70
+
71
+ **This repository is the model repository of GLM-4-9B-Chat, supporting `128K` context length.**
72
+
73
+ ## Quick Start
74
+
75
+ **For more inference code and requirements, please visit our [github page](https://github.com/THUDM/GLM-4).**
76
+
77
+ **Please strictly follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) to
78
+ install, otherwise it will not run properly**
79
+
80
+ ### Use the following method to quickly call the GLM-4-9B-Chat language model
81
+
82
+ Use the transformers backend for inference:
83
+
84
+ ```python
85
+ import torch
86
+ from transformers import AutoModelForCausalLM, AutoTokenizer
87
+
88
+ device = "cuda"
89
+
90
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
91
+
92
+ query = "Hello"
93
+
94
+ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
95
+ add_generation_prompt=True,
96
+ tokenize=True,
97
+ return_tensors="pt",
98
+ return_dict=True
99
+ )
100
+
101
+ inputs = inputs.to(device)
102
+ model = AutoModelForCausalLM.from_pretrained(
103
+ "THUDM/glm-4-9b-chat",
104
+ torch_dtype=torch.bfloat16,
105
+ low_cpu_mem_usage=True,
106
+ trust_remote_code=True
107
+ ).to(device).eval()
108
+
109
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
110
+ with torch.no_grad():
111
+ outputs = model.generate(**inputs, **gen_kwargs)
112
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
113
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
114
+ ```
115
+
116
+ Use the vLLM backend for inference:
117
+
118
+ ```python
119
+ from transformers import AutoTokenizer
120
+ from vllm import LLM, SamplingParams
121
+
122
+ # GLM-4-9B-Chat-1M
123
+ # max_model_len, tp_size = 1048576, 4
124
+
125
+ # GLM-4-9B-Chat
126
+ # If you encounter OOM, it is recommended to reduce max_model_len or increase tp_size
127
+ max_model_len, tp_size = 131072, 1
128
+ model_name = "THUDM/glm-4-9b-chat"
129
+ prompt = [{"role": "user", "content": "hello"}]
130
+
131
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
132
+ llm = LLM(
133
+ model=model_name,
134
+ tensor_parallel_size=tp_size,
135
+ max_model_len=max_model_len,
136
+ trust_remote_code=True,
137
+ enforce_eager=True,
138
+ # GLM-4-9B-Chat-1M If you encounter OOM phenomenon, it is recommended to enable the following parameters
139
+ # enable_chunked_prefill=True,
140
+ # max_num_batched_tokens=8192
141
+ )
142
+ stop_token_ids = [151329, 151336, 151338]
143
+ sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
144
+
145
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
146
+ outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
147
+ print(outputs[0].outputs[0].text)
148
+ ```
149
+
150
+ ## LICENSE
151
+
152
+ The weights of the GLM-4 model are available under the terms of [LICENSE](LICENSE).
153
+
154
+ ## Citations
155
+
156
+ If you find our work useful, please consider citing the following paper.
157
+
158
+ ```
159
+ @misc{glm2024chatglm,
160
+ title={ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools},
161
+ author={Team GLM and Aohan Zeng and Bin Xu and Bowen Wang and Chenhui Zhang and Da Yin and Diego Rojas and Guanyu Feng and Hanlin Zhao and Hanyu Lai and Hao Yu and Hongning Wang and Jiadai Sun and Jiajie Zhang and Jiale Cheng and Jiayi Gui and Jie Tang and Jing Zhang and Juanzi Li and Lei Zhao and Lindong Wu and Lucen Zhong and Mingdao Liu and Minlie Huang and Peng Zhang and Qinkai Zheng and Rui Lu and Shuaiqi Duan and Shudan Zhang and Shulin Cao and Shuxun Yang and Weng Lam Tam and Wenyi Zhao and Xiao Liu and Xiao Xia and Xiaohan Zhang and Xiaotao Gu and Xin Lv and Xinghan Liu and Xinyi Liu and Xinyue Yang and Xixuan Song and Xunkai Zhang and Yifan An and Yifan Xu and Yilin Niu and Yuantao Yang and Yueyan Li and Yushi Bai and Yuxiao Dong and Zehan Qi and Zhaoyu Wang and Zhen Yang and Zhengxiao Du and Zhenyu Hou and Zihan Wang},
162
+ year={2024},
163
+ eprint={2406.12793},
164
+ archivePrefix={arXiv},
165
+ primaryClass={id='cs.CL' full_name='Computation and Language' is_active=True alt_name='cmp-lg' in_archive='cs' is_general=False description='Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.'}
166
+ }
167
+ ```
config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "THUDM/glm-4-9b-chat",
3
+ "model_type": "chatglm",
4
+ "architectures": [
5
+ "ChatGLMModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_chatglm.ChatGLMConfig",
9
+ "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
10
+ "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
11
+ "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
12
+ "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
13
+ },
14
+ "add_bias_linear": false,
15
+ "add_qkv_bias": true,
16
+ "apply_query_key_layer_scaling": true,
17
+ "apply_residual_connection_post_layernorm": false,
18
+ "attention_dropout": 0.0,
19
+ "attention_softmax_in_fp32": true,
20
+ "attn_implementation": "sdpa",
21
+ "bias_dropout_fusion": true,
22
+ "ffn_hidden_size": 13696,
23
+ "fp32_residual_connection": false,
24
+ "hidden_dropout": 0.0,
25
+ "hidden_size": 4096,
26
+ "kv_channels": 128,
27
+ "layernorm_epsilon": 1.5625e-07,
28
+ "multi_query_attention": true,
29
+ "multi_query_group_num": 2,
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 40,
32
+ "num_layers": 40,
33
+ "rope_ratio": 500,
34
+ "original_rope": true,
35
+ "padded_vocab_size": 151552,
36
+ "post_layer_norm": true,
37
+ "rmsnorm": true,
38
+ "seq_length": 131072,
39
+ "use_cache": true,
40
+ "torch_dtype": "bfloat16",
41
+ "transformers_version": "4.44.0",
42
+ "tie_word_embeddings": false,
43
+ "eos_token_id": [151329, 151336, 151338],
44
+ "pad_token_id": 151329
45
+ }
configuration.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"framework":"Pytorch","task":"nli"}
configuration_chatglm.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+
7
+ def __init__(
8
+ self,
9
+ num_layers=28,
10
+ padded_vocab_size=65024,
11
+ hidden_size=4096,
12
+ ffn_hidden_size=13696,
13
+ kv_channels=128,
14
+ num_attention_heads=32,
15
+ seq_length=2048,
16
+ hidden_dropout=0.0,
17
+ classifier_dropout=None,
18
+ attention_dropout=0.0,
19
+ layernorm_epsilon=1e-5,
20
+ rmsnorm=True,
21
+ apply_residual_connection_post_layernorm=False,
22
+ post_layer_norm=True,
23
+ add_bias_linear=False,
24
+ add_qkv_bias=False,
25
+ bias_dropout_fusion=True,
26
+ multi_query_attention=False,
27
+ multi_query_group_num=1,
28
+ rope_ratio=1,
29
+ apply_query_key_layer_scaling=True,
30
+ attention_softmax_in_fp32=True,
31
+ fp32_residual_connection=False,
32
+ **kwargs
33
+ ):
34
+ self.num_layers = num_layers
35
+ self.vocab_size = padded_vocab_size
36
+ self.padded_vocab_size = padded_vocab_size
37
+ self.hidden_size = hidden_size
38
+ self.ffn_hidden_size = ffn_hidden_size
39
+ self.kv_channels = kv_channels
40
+ self.num_attention_heads = num_attention_heads
41
+ self.seq_length = seq_length
42
+ self.hidden_dropout = hidden_dropout
43
+ self.classifier_dropout = classifier_dropout
44
+ self.attention_dropout = attention_dropout
45
+ self.layernorm_epsilon = layernorm_epsilon
46
+ self.rmsnorm = rmsnorm
47
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
48
+ self.post_layer_norm = post_layer_norm
49
+ self.add_bias_linear = add_bias_linear
50
+ self.add_qkv_bias = add_qkv_bias
51
+ self.bias_dropout_fusion = bias_dropout_fusion
52
+ self.multi_query_attention = multi_query_attention
53
+ self.multi_query_group_num = multi_query_group_num
54
+ self.rope_ratio = rope_ratio
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": [
3
+ 151329,
4
+ 151336,
5
+ 151338
6
+ ],
7
+ "pad_token_id": 151329,
8
+ "do_sample": true,
9
+ "temperature": 0.8,
10
+ "max_length": 128000,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.44.0"
13
+ }
model-00001-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4109636b2486ad54e150e68be254534971f1d0ce7464b27b56cf77521aa6da9
3
+ size 1945161760
model-00002-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:584b0f3e097a8ef5fe01fba1c43b4c6410ae6d3b9b710be075f9501863222503
3
+ size 1815217640
model-00003-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06c6e7697ba1da1059f154a5cb8e1fe849210ba9fc6422ca7b3b2dfebba06d87
3
+ size 1968291912
model-00004-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2233bfa88b4179f9f2d7cd95db7cbe2cec574196c31cdb58162315ad151409fa
3
+ size 1927406992
model-00005-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea209d70ada3b9a68d1ced8864bb95216cbf318630e9a9086cd570d734d66f71
3
+ size 1815217672
model-00006-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30015b88745e032e03b6a0a9c1f8d66321d382ded3fdda0cf58fc4137005a6cf
3
+ size 1968291952
model-00007-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7f4b8149c8e47c9e0f7d5685f777511e51cf339bc9fdabf8e87b5754d048721
3
+ size 1927406992
model-00008-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db41135b5f9a620cdecca42655397655c71ca00663b2e5ac0858224bd46231eb
3
+ size 1815217672
model-00009-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:862ddc7af9ab395e9fa0d4e5131a1023279a544c7a92ef3dc2a3fa32d375e83c
3
+ size 1968291952
model-00010-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5074b7b69fc7ccc69a0b3c651a2f826ea7a1695dd562d7a7ce825168d1550b43
3
+ size 1649436712
model.safetensors.index.json ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18799902784
4
+ },
5
+ "weight_map": {
6
+ "transformer.embedding.word_embeddings.weight": "model-00001-of-00010.safetensors",
7
+ "transformer.encoder.final_layernorm.weight": "model-00010-of-00010.safetensors",
8
+ "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
9
+ "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00010.safetensors",
10
+ "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00010.safetensors",
11
+ "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
12
+ "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00010.safetensors",
13
+ "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00010.safetensors",
14
+ "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00010.safetensors",
15
+ "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
16
+ "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
17
+ "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00010.safetensors",
18
+ "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
19
+ "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00010.safetensors",
20
+ "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00010.safetensors",
21
+ "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00010.safetensors",
22
+ "transformer.encoder.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
23
+ "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
24
+ "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
25
+ "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
26
+ "transformer.encoder.layers.10.self_attention.dense.weight": "model-00003-of-00010.safetensors",
27
+ "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
28
+ "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
29
+ "transformer.encoder.layers.11.input_layernorm.weight": "model-00003-of-00010.safetensors",
30
+ "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
31
+ "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
32
+ "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
33
+ "transformer.encoder.layers.11.self_attention.dense.weight": "model-00004-of-00010.safetensors",
34
+ "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
35
+ "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
36
+ "transformer.encoder.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
37
+ "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
38
+ "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
39
+ "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
40
+ "transformer.encoder.layers.12.self_attention.dense.weight": "model-00004-of-00010.safetensors",
41
+ "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
42
+ "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
43
+ "transformer.encoder.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
44
+ "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
45
+ "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
46
+ "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
47
+ "transformer.encoder.layers.13.self_attention.dense.weight": "model-00004-of-00010.safetensors",
48
+ "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
49
+ "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
50
+ "transformer.encoder.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
51
+ "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00004-of-00010.safetensors",
52
+ "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
53
+ "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
54
+ "transformer.encoder.layers.14.self_attention.dense.weight": "model-00004-of-00010.safetensors",
55
+ "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
56
+ "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
57
+ "transformer.encoder.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
58
+ "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
59
+ "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00004-of-00010.safetensors",
60
+ "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
61
+ "transformer.encoder.layers.15.self_attention.dense.weight": "model-00004-of-00010.safetensors",
62
+ "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00004-of-00010.safetensors",
63
+ "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00004-of-00010.safetensors",
64
+ "transformer.encoder.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
65
+ "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
66
+ "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
67
+ "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
68
+ "transformer.encoder.layers.16.self_attention.dense.weight": "model-00005-of-00010.safetensors",
69
+ "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
70
+ "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
71
+ "transformer.encoder.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
72
+ "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
73
+ "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
74
+ "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
75
+ "transformer.encoder.layers.17.self_attention.dense.weight": "model-00005-of-00010.safetensors",
76
+ "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
77
+ "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
78
+ "transformer.encoder.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
79
+ "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
80
+ "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
81
+ "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
82
+ "transformer.encoder.layers.18.self_attention.dense.weight": "model-00005-of-00010.safetensors",
83
+ "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
84
+ "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
85
+ "transformer.encoder.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
86
+ "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00005-of-00010.safetensors",
87
+ "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00005-of-00010.safetensors",
88
+ "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
89
+ "transformer.encoder.layers.19.self_attention.dense.weight": "model-00005-of-00010.safetensors",
90
+ "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
91
+ "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
92
+ "transformer.encoder.layers.2.input_layernorm.weight": "model-00002-of-00010.safetensors",
93
+ "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
94
+ "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
95
+ "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
96
+ "transformer.encoder.layers.2.self_attention.dense.weight": "model-00002-of-00010.safetensors",
97
+ "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
98
+ "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
99
+ "transformer.encoder.layers.20.input_layernorm.weight": "model-00005-of-00010.safetensors",
100
+ "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
101
+ "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
102
+ "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
103
+ "transformer.encoder.layers.20.self_attention.dense.weight": "model-00005-of-00010.safetensors",
104
+ "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00005-of-00010.safetensors",
105
+ "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00005-of-00010.safetensors",
106
+ "transformer.encoder.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
107
+ "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
108
+ "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
109
+ "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
110
+ "transformer.encoder.layers.21.self_attention.dense.weight": "model-00006-of-00010.safetensors",
111
+ "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
112
+ "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
113
+ "transformer.encoder.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
114
+ "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
115
+ "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
116
+ "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
117
+ "transformer.encoder.layers.22.self_attention.dense.weight": "model-00006-of-00010.safetensors",
118
+ "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
119
+ "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
120
+ "transformer.encoder.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
121
+ "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
122
+ "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
123
+ "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
124
+ "transformer.encoder.layers.23.self_attention.dense.weight": "model-00006-of-00010.safetensors",
125
+ "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
126
+ "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
127
+ "transformer.encoder.layers.24.input_layernorm.weight": "model-00006-of-00010.safetensors",
128
+ "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00006-of-00010.safetensors",
129
+ "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00006-of-00010.safetensors",
130
+ "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
131
+ "transformer.encoder.layers.24.self_attention.dense.weight": "model-00006-of-00010.safetensors",
132
+ "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00006-of-00010.safetensors",
133
+ "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00006-of-00010.safetensors",
134
+ "transformer.encoder.layers.25.input_layernorm.weight": "model-00006-of-00010.safetensors",
135
+ "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
136
+ "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
137
+ "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
138
+ "transformer.encoder.layers.25.self_attention.dense.weight": "model-00007-of-00010.safetensors",
139
+ "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
140
+ "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
141
+ "transformer.encoder.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
142
+ "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
143
+ "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
144
+ "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
145
+ "transformer.encoder.layers.26.self_attention.dense.weight": "model-00007-of-00010.safetensors",
146
+ "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
147
+ "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
148
+ "transformer.encoder.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
149
+ "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
150
+ "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
151
+ "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
152
+ "transformer.encoder.layers.27.self_attention.dense.weight": "model-00007-of-00010.safetensors",
153
+ "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
154
+ "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
155
+ "transformer.encoder.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
156
+ "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00007-of-00010.safetensors",
157
+ "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
158
+ "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
159
+ "transformer.encoder.layers.28.self_attention.dense.weight": "model-00007-of-00010.safetensors",
160
+ "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
161
+ "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
162
+ "transformer.encoder.layers.29.input_layernorm.weight": "model-00007-of-00010.safetensors",
163
+ "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
164
+ "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00007-of-00010.safetensors",
165
+ "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
166
+ "transformer.encoder.layers.29.self_attention.dense.weight": "model-00007-of-00010.safetensors",
167
+ "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00007-of-00010.safetensors",
168
+ "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00007-of-00010.safetensors",
169
+ "transformer.encoder.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
170
+ "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
171
+ "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
172
+ "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
173
+ "transformer.encoder.layers.3.self_attention.dense.weight": "model-00002-of-00010.safetensors",
174
+ "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
175
+ "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
176
+ "transformer.encoder.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
177
+ "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
178
+ "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
179
+ "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
180
+ "transformer.encoder.layers.30.self_attention.dense.weight": "model-00008-of-00010.safetensors",
181
+ "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
182
+ "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
183
+ "transformer.encoder.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
184
+ "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
185
+ "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
186
+ "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
187
+ "transformer.encoder.layers.31.self_attention.dense.weight": "model-00008-of-00010.safetensors",
188
+ "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
189
+ "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
190
+ "transformer.encoder.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
191
+ "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
192
+ "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
193
+ "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
194
+ "transformer.encoder.layers.32.self_attention.dense.weight": "model-00008-of-00010.safetensors",
195
+ "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
196
+ "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
197
+ "transformer.encoder.layers.33.input_layernorm.weight": "model-00008-of-00010.safetensors",
198
+ "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00008-of-00010.safetensors",
199
+ "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00008-of-00010.safetensors",
200
+ "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
201
+ "transformer.encoder.layers.33.self_attention.dense.weight": "model-00008-of-00010.safetensors",
202
+ "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
203
+ "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
204
+ "transformer.encoder.layers.34.input_layernorm.weight": "model-00008-of-00010.safetensors",
205
+ "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
206
+ "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
207
+ "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
208
+ "transformer.encoder.layers.34.self_attention.dense.weight": "model-00008-of-00010.safetensors",
209
+ "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00008-of-00010.safetensors",
210
+ "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00008-of-00010.safetensors",
211
+ "transformer.encoder.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
212
+ "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
213
+ "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
214
+ "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
215
+ "transformer.encoder.layers.35.self_attention.dense.weight": "model-00009-of-00010.safetensors",
216
+ "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
217
+ "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
218
+ "transformer.encoder.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
219
+ "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
220
+ "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
221
+ "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
222
+ "transformer.encoder.layers.36.self_attention.dense.weight": "model-00009-of-00010.safetensors",
223
+ "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
224
+ "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
225
+ "transformer.encoder.layers.37.input_layernorm.weight": "model-00009-of-00010.safetensors",
226
+ "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
227
+ "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
228
+ "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
229
+ "transformer.encoder.layers.37.self_attention.dense.weight": "model-00009-of-00010.safetensors",
230
+ "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
231
+ "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
232
+ "transformer.encoder.layers.38.input_layernorm.weight": "model-00009-of-00010.safetensors",
233
+ "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00009-of-00010.safetensors",
234
+ "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00009-of-00010.safetensors",
235
+ "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
236
+ "transformer.encoder.layers.38.self_attention.dense.weight": "model-00009-of-00010.safetensors",
237
+ "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00009-of-00010.safetensors",
238
+ "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00009-of-00010.safetensors",
239
+ "transformer.encoder.layers.39.input_layernorm.weight": "model-00009-of-00010.safetensors",
240
+ "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00010-of-00010.safetensors",
241
+ "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00010-of-00010.safetensors",
242
+ "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
243
+ "transformer.encoder.layers.39.self_attention.dense.weight": "model-00010-of-00010.safetensors",
244
+ "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00010-of-00010.safetensors",
245
+ "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00010-of-00010.safetensors",
246
+ "transformer.encoder.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
247
+ "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
248
+ "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
249
+ "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
250
+ "transformer.encoder.layers.4.self_attention.dense.weight": "model-00002-of-00010.safetensors",
251
+ "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
252
+ "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
253
+ "transformer.encoder.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
254
+ "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00002-of-00010.safetensors",
255
+ "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00002-of-00010.safetensors",
256
+ "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
257
+ "transformer.encoder.layers.5.self_attention.dense.weight": "model-00002-of-00010.safetensors",
258
+ "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
259
+ "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
260
+ "transformer.encoder.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
261
+ "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
262
+ "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
263
+ "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
264
+ "transformer.encoder.layers.6.self_attention.dense.weight": "model-00002-of-00010.safetensors",
265
+ "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00002-of-00010.safetensors",
266
+ "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00002-of-00010.safetensors",
267
+ "transformer.encoder.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
268
+ "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
269
+ "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
270
+ "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
271
+ "transformer.encoder.layers.7.self_attention.dense.weight": "model-00003-of-00010.safetensors",
272
+ "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
273
+ "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
274
+ "transformer.encoder.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
275
+ "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
276
+ "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
277
+ "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
278
+ "transformer.encoder.layers.8.self_attention.dense.weight": "model-00003-of-00010.safetensors",
279
+ "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
280
+ "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
281
+ "transformer.encoder.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
282
+ "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00003-of-00010.safetensors",
283
+ "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00003-of-00010.safetensors",
284
+ "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
285
+ "transformer.encoder.layers.9.self_attention.dense.weight": "model-00003-of-00010.safetensors",
286
+ "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00003-of-00010.safetensors",
287
+ "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00003-of-00010.safetensors",
288
+ "transformer.output_layer.weight": "model-00010-of-00010.safetensors",
289
+ "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00010.safetensors"
290
+ }
291
+ }
modeling_chatglm.py ADDED
@@ -0,0 +1,1138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import sys
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ import torch.nn.functional as F
8
+ from torch import nn
9
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
10
+ from torch.nn.utils import skip_init
11
+ from typing import Optional, Tuple, Union, List, Dict, Any
12
+
13
+ from transformers.modeling_outputs import (
14
+ BaseModelOutputWithPast,
15
+ CausalLMOutputWithPast,
16
+ SequenceClassifierOutputWithPast,
17
+ )
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging, is_torch_npu_available
20
+ from transformers.generation.logits_process import LogitsProcessor
21
+ from transformers.generation.utils import ModelOutput
22
+
23
+ from .configuration_chatglm import ChatGLMConfig
24
+
25
+ try:
26
+ from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
27
+
28
+ if is_flash_attn_2_available():
29
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
30
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
31
+ except:
32
+ pass
33
+
34
+ # flags required to enable jit fusion kernels
35
+
36
+ if sys.platform != 'darwin' and not is_torch_npu_available():
37
+ torch._C._jit_set_profiling_mode(False)
38
+ torch._C._jit_set_profiling_executor(False)
39
+ torch._C._jit_override_can_fuse_on_cpu(True)
40
+ torch._C._jit_override_can_fuse_on_gpu(True)
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
45
+ _CONFIG_FOR_DOC = "ChatGLMConfig"
46
+
47
+
48
+ def default_init(cls, *args, **kwargs):
49
+ return cls(*args, **kwargs)
50
+
51
+
52
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
53
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
54
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
55
+ scores.zero_()
56
+ scores[..., 198] = 5e4
57
+ return scores
58
+
59
+
60
+ def split_tensor_along_last_dim(
61
+ tensor: torch.Tensor,
62
+ num_partitions: int,
63
+ contiguous_split_chunks: bool = False,
64
+ ) -> List[torch.Tensor]:
65
+ """Split a tensor along its last dimension.
66
+
67
+ Arguments:
68
+ tensor: input tensor.
69
+ num_partitions: number of partitions to split the tensor
70
+ contiguous_split_chunks: If True, make each chunk contiguous
71
+ in memory.
72
+
73
+ Returns:
74
+ A list of Tensors
75
+ """
76
+ # Get the size and dimension.
77
+ last_dim = tensor.dim() - 1
78
+ last_dim_size = tensor.size()[last_dim] // num_partitions
79
+ # Split.
80
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
81
+ # Note: torch.split does not create contiguous tensors by default.
82
+ if contiguous_split_chunks:
83
+ return tuple(chunk.contiguous() for chunk in tensor_list)
84
+
85
+ return tensor_list
86
+
87
+
88
+ class RotaryEmbedding(nn.Module):
89
+ def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
90
+ super().__init__()
91
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
92
+ self.register_buffer("inv_freq", inv_freq)
93
+ self.dim = dim
94
+ self.original_impl = original_impl
95
+ self.rope_ratio = rope_ratio
96
+
97
+ def forward_impl(
98
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
99
+ ):
100
+ """Enhanced Transformer with Rotary Position Embedding.
101
+
102
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
103
+ transformers/rope/__init__.py. MIT License:
104
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
105
+ """
106
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
107
+ base = base * self.rope_ratio
108
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
109
+
110
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
111
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
112
+
113
+ # Calculate the product of position index and $\theta_i$
114
+ idx_theta = torch.outer(seq_idx, theta).float()
115
+
116
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
117
+
118
+ # this is to mimic the behaviour of complex32, else we will get different results
119
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
120
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
121
+ return cache
122
+
123
+ def forward(self, max_seq_len, offset=0):
124
+ return self.forward_impl(
125
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
126
+ )
127
+
128
+
129
+ @torch.jit.script
130
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
131
+ # x: [b, np, sq, hn]
132
+ b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
133
+ rot_dim = rope_cache.shape[-2] * 2
134
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
135
+ # truncate to support variable sizes
136
+ rope_cache = rope_cache[:, :sq]
137
+ xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
138
+ rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
139
+ x_out2 = torch.stack(
140
+ [
141
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
142
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
143
+ ],
144
+ -1,
145
+ )
146
+ x_out2 = x_out2.flatten(3)
147
+ return torch.cat((x_out2, x_pass), dim=-1)
148
+
149
+
150
+ class RMSNorm(torch.nn.Module):
151
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
152
+ super().__init__()
153
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
154
+ self.eps = eps
155
+
156
+ def forward(self, hidden_states: torch.Tensor):
157
+ input_dtype = hidden_states.dtype
158
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
159
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
160
+
161
+ return (self.weight * hidden_states).to(input_dtype)
162
+
163
+
164
+ class CoreAttention(torch.nn.Module):
165
+ def __init__(self, config: ChatGLMConfig, layer_number):
166
+ super(CoreAttention, self).__init__()
167
+ self.config = config
168
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
169
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
170
+ if self.apply_query_key_layer_scaling:
171
+ self.attention_softmax_in_fp32 = True
172
+ self.layer_number = max(1, layer_number)
173
+ self.is_causal = True
174
+
175
+ projection_size = config.kv_channels * config.num_attention_heads
176
+
177
+ # Per attention head and per partition values.
178
+ self.hidden_size_per_partition = projection_size
179
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
180
+ self.num_attention_heads_per_partition = config.num_attention_heads
181
+
182
+ coeff = None
183
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
184
+ if self.apply_query_key_layer_scaling:
185
+ coeff = self.layer_number
186
+ self.norm_factor *= coeff
187
+ self.coeff = coeff
188
+
189
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
190
+
191
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
192
+ # [b, np, sq, sk]
193
+ output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
194
+
195
+ # [b, np, sq, hn] -> [b * np, sq, hn]
196
+ query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
197
+ # [b, np, sk, hn] -> [b * np, sk, hn]
198
+ key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
199
+
200
+ # preallocting input tensor: [b * np, sq, sk]
201
+ matmul_input_buffer = torch.empty(
202
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
203
+ device=query_layer.device
204
+ )
205
+
206
+ # Raw attention scores. [b * np, sq, sk]
207
+ matmul_result = torch.baddbmm(
208
+ matmul_input_buffer,
209
+ query_layer, # [b * np, sq, hn]
210
+ key_layer.transpose(1, 2), # [b * np, hn, sk]
211
+ beta=0.0,
212
+ alpha=(1.0 / self.norm_factor),
213
+ )
214
+
215
+ # change view to [b, np, sq, sk]
216
+ attention_scores = matmul_result.view(*output_size)
217
+
218
+ # ===========================
219
+ # Attention probs and dropout
220
+ # ===========================
221
+
222
+ # attention scores and attention mask [b, np, sq, sk]
223
+ if self.attention_softmax_in_fp32:
224
+ attention_scores = attention_scores.float()
225
+ if self.coeff is not None:
226
+ attention_scores = attention_scores * self.coeff
227
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
228
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
229
+ device=attention_scores.device, dtype=torch.bool)
230
+ attention_mask.tril_()
231
+ attention_mask = ~attention_mask
232
+ if attention_mask is not None:
233
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
234
+ attention_probs = F.softmax(attention_scores, dim=-1)
235
+ attention_probs = attention_probs.type_as(value_layer)
236
+
237
+ # This is actually dropping out entire tokens to attend to, which might
238
+ # seem a bit unusual, but is taken from the original Transformer paper.
239
+ attention_probs = self.attention_dropout(attention_probs)
240
+
241
+ # query layer shape: [b * np, sq, hn]
242
+ # value layer shape: [b, np, sk, hn]
243
+ # attention shape: [b, np, sq, sk]
244
+ # context layer shape: [b, np, sq, hn]
245
+ output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
246
+ # change view [b * np, sk, hn]
247
+ value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
248
+ # change view [b * np, sq, sk]
249
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
250
+ # matmul: [b * np, sq, hn]
251
+ context_layer = torch.bmm(attention_probs, value_layer)
252
+ # change view [b, np, sq, hn]
253
+ context_layer = context_layer.view(*output_size)
254
+ # [b, np, sq, hn] --> [b, sq, np, hn]
255
+ context_layer = context_layer.transpose(1, 2).contiguous()
256
+ # [b, sq, np, hn] --> [b, sq, hp]
257
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
258
+ context_layer = context_layer.reshape(*new_context_layer_shape)
259
+
260
+ return context_layer
261
+
262
+
263
+ class SdpaAttention(CoreAttention):
264
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
265
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
266
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
267
+ is_causal=True,
268
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
269
+ else:
270
+ if attention_mask is not None:
271
+ attention_mask = ~attention_mask
272
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
273
+ attention_mask,
274
+ dropout_p=self.config.attention_dropout if self.training else 0.0)
275
+ context_layer = context_layer.transpose(1, 2).contiguous()
276
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
277
+ context_layer = context_layer.reshape(*new_context_layer_shape)
278
+ return context_layer
279
+
280
+
281
+ def _get_unpad_data(attention_mask):
282
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
283
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
284
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
285
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
286
+ return (
287
+ indices,
288
+ cu_seqlens,
289
+ max_seqlen_in_batch,
290
+ )
291
+
292
+
293
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
294
+ class FlashAttention2(CoreAttention):
295
+ def __init__(self, *args, **kwargs):
296
+ super().__init__(*args, **kwargs)
297
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
298
+
299
+ def forward(self, query_states, key_states, value_states, attention_mask):
300
+ query_states = query_states.transpose(1, 2)
301
+ key_states = key_states.transpose(1, 2)
302
+ value_states = value_states.transpose(1, 2)
303
+ batch_size, query_length = query_states.shape[:2]
304
+ if not self._flash_attn_uses_top_left_mask:
305
+ causal = self.is_causal
306
+ else:
307
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
308
+ causal = self.is_causal and query_length != 1
309
+ dropout = self.config.attention_dropout if self.training else 0.0
310
+ # Contains at least one padding token in the sequence
311
+ if attention_mask is not None:
312
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
313
+ query_states, key_states, value_states, attention_mask, query_length
314
+ )
315
+
316
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
317
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
318
+
319
+ attn_output_unpad = flash_attn_varlen_func(
320
+ query_states,
321
+ key_states,
322
+ value_states,
323
+ cu_seqlens_q=cu_seqlens_q,
324
+ cu_seqlens_k=cu_seqlens_k,
325
+ max_seqlen_q=max_seqlen_in_batch_q,
326
+ max_seqlen_k=max_seqlen_in_batch_k,
327
+ dropout_p=dropout,
328
+ softmax_scale=None,
329
+ causal=causal,
330
+ )
331
+
332
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
333
+ else:
334
+ attn_output = flash_attn_func(
335
+ query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
336
+ )
337
+ attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
338
+ return attn_output
339
+
340
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
341
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
342
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
343
+
344
+ key_layer = index_first_axis(
345
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
346
+ )
347
+ value_layer = index_first_axis(
348
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
349
+ )
350
+ if query_length == kv_seq_len:
351
+ query_layer = index_first_axis(
352
+ query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
353
+ indices_k
354
+ )
355
+ cu_seqlens_q = cu_seqlens_k
356
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
357
+ indices_q = indices_k
358
+ elif query_length == 1:
359
+ max_seqlen_in_batch_q = 1
360
+ cu_seqlens_q = torch.arange(
361
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
362
+ ) # There is a memcpy here, that is very bad.
363
+ indices_q = cu_seqlens_q[:-1]
364
+ query_layer = query_layer.squeeze(1)
365
+ else:
366
+ # The -q_len: slice assumes left padding.
367
+ attention_mask = attention_mask[:, -query_length:]
368
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
369
+
370
+ return (
371
+ query_layer,
372
+ key_layer,
373
+ value_layer,
374
+ indices_q,
375
+ (cu_seqlens_q, cu_seqlens_k),
376
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
377
+ )
378
+
379
+
380
+ CORE_ATTENTION_CLASSES = {
381
+ "eager": CoreAttention,
382
+ "sdpa": SdpaAttention,
383
+ "flash_attention_2": FlashAttention2
384
+ }
385
+
386
+
387
+ class SelfAttention(torch.nn.Module):
388
+ """Parallel self-attention layer abstract class.
389
+
390
+ Self-attention layer takes input with size [s, b, h]
391
+ and returns output of the same size.
392
+ """
393
+
394
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
395
+ super(SelfAttention, self).__init__()
396
+ self.layer_number = max(1, layer_number)
397
+
398
+ self.projection_size = config.kv_channels * config.num_attention_heads
399
+
400
+ # Per attention head and per partition values.
401
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
402
+ self.num_attention_heads_per_partition = config.num_attention_heads
403
+
404
+ self.multi_query_attention = config.multi_query_attention
405
+ self.qkv_hidden_size = 3 * self.projection_size
406
+ if self.multi_query_attention:
407
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
408
+ self.qkv_hidden_size = (
409
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
410
+ )
411
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
412
+ bias=config.add_bias_linear or config.add_qkv_bias,
413
+ device=device, **_config_to_kwargs(config)
414
+ )
415
+
416
+ self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
417
+
418
+ # Output.
419
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
420
+ device=device, **_config_to_kwargs(config)
421
+ )
422
+
423
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
424
+ if self.multi_query_attention:
425
+ num_attention_heads = self.num_multi_query_groups_per_partition
426
+ else:
427
+ num_attention_heads = self.num_attention_heads_per_partition
428
+ return torch.empty(
429
+ inference_max_sequence_len,
430
+ batch_size,
431
+ num_attention_heads,
432
+ self.hidden_size_per_attention_head,
433
+ dtype=dtype,
434
+ device=device,
435
+ )
436
+
437
+ def forward(
438
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
439
+ ):
440
+ # hidden_states: [b, sq, h]
441
+
442
+ # =================================================
443
+ # Pre-allocate memory for key-values for inference.
444
+ # =================================================
445
+ # =====================
446
+ # Query, Key, and Value
447
+ # =====================
448
+
449
+ # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
450
+ mixed_x_layer = self.query_key_value(hidden_states)
451
+
452
+ if self.multi_query_attention:
453
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
454
+ [
455
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
456
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
457
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
458
+ ],
459
+ dim=-1,
460
+ )
461
+ query_layer = query_layer.view(
462
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
463
+ )
464
+ key_layer = key_layer.view(
465
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
466
+ )
467
+ value_layer = value_layer.view(
468
+ value_layer.size()[:-1]
469
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
470
+ )
471
+ else:
472
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
473
+ (self.num_attention_heads_per_partition,
474
+ 3 * self.hidden_size_per_attention_head)
475
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
476
+
477
+ # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
478
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
479
+
480
+ # [b, sq, np, hn] -> [b, np, sq, hn]
481
+ query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
482
+
483
+ # apply relative positional encoding (rotary embedding)
484
+ if rotary_pos_emb is not None:
485
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
486
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
487
+
488
+ # adjust key and value for inference
489
+ if kv_cache is not None:
490
+ cache_k, cache_v = kv_cache
491
+ key_layer = torch.cat((cache_k, key_layer), dim=2)
492
+ value_layer = torch.cat((cache_v, value_layer), dim=2)
493
+ if use_cache:
494
+ if kv_cache is None:
495
+ kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
496
+ dim=1)
497
+ else:
498
+ kv_cache = (key_layer, value_layer)
499
+ else:
500
+ kv_cache = None
501
+
502
+ if self.multi_query_attention:
503
+ key_layer = key_layer.unsqueeze(2)
504
+ key_layer = key_layer.expand(
505
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
506
+ )
507
+ key_layer = key_layer.contiguous().view(
508
+ key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
509
+ )
510
+ value_layer = value_layer.unsqueeze(2)
511
+ value_layer = value_layer.expand(
512
+ -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
513
+ )
514
+ value_layer = value_layer.contiguous().view(
515
+ value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
516
+ )
517
+
518
+ # ==================================
519
+ # core attention computation
520
+ # ==================================
521
+
522
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
523
+
524
+ # =================
525
+ # Output. [sq, b, h]
526
+ # =================
527
+
528
+ output = self.dense(context_layer)
529
+
530
+ return output, kv_cache
531
+
532
+
533
+ def _config_to_kwargs(args):
534
+ common_kwargs = {
535
+ "dtype": args.torch_dtype,
536
+ }
537
+ return common_kwargs
538
+
539
+
540
+ class MLP(torch.nn.Module):
541
+ """MLP.
542
+
543
+ MLP will take the input with h hidden state, project it to 4*h
544
+ hidden dimension, perform nonlinear transformation, and project the
545
+ state back into h hidden dimension.
546
+ """
547
+
548
+ def __init__(self, config: ChatGLMConfig, device=None):
549
+ super(MLP, self).__init__()
550
+
551
+ self.add_bias = config.add_bias_linear
552
+
553
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
554
+ self.dense_h_to_4h = nn.Linear(
555
+ config.hidden_size,
556
+ config.ffn_hidden_size * 2,
557
+ bias=self.add_bias,
558
+ device=device,
559
+ **_config_to_kwargs(config)
560
+ )
561
+
562
+ def swiglu(x):
563
+ x = torch.chunk(x, 2, dim=-1)
564
+ return F.silu(x[0]) * x[1]
565
+
566
+ self.activation_func = swiglu
567
+
568
+ # Project back to h.
569
+ self.dense_4h_to_h = nn.Linear(
570
+ config.ffn_hidden_size,
571
+ config.hidden_size,
572
+ bias=self.add_bias,
573
+ device=device,
574
+ **_config_to_kwargs(config)
575
+ )
576
+
577
+ def forward(self, hidden_states):
578
+ # [s, b, 4hp]
579
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
580
+ intermediate_parallel = self.activation_func(intermediate_parallel)
581
+ # [s, b, h]
582
+ output = self.dense_4h_to_h(intermediate_parallel)
583
+ return output
584
+
585
+
586
+ class GLMBlock(torch.nn.Module):
587
+ """A single transformer layer.
588
+
589
+ Transformer layer takes input with size [s, b, h] and returns an
590
+ output of the same size.
591
+ """
592
+
593
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
594
+ super(GLMBlock, self).__init__()
595
+ self.layer_number = layer_number
596
+
597
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
598
+
599
+ self.fp32_residual_connection = config.fp32_residual_connection
600
+
601
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
602
+ # Layernorm on the input data.
603
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
604
+ dtype=config.torch_dtype)
605
+
606
+ # Self attention.
607
+ self.self_attention = SelfAttention(config, layer_number, device=device)
608
+ self.hidden_dropout = config.hidden_dropout
609
+
610
+ # Layernorm on the attention output
611
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
612
+ dtype=config.torch_dtype)
613
+
614
+ # MLP
615
+ self.mlp = MLP(config, device=device)
616
+
617
+ def forward(
618
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
619
+ ):
620
+ # hidden_states: [s, b, h]
621
+
622
+ # Layer norm at the beginning of the transformer layer.
623
+ layernorm_output = self.input_layernorm(hidden_states)
624
+ # Self attention.
625
+ attention_output, kv_cache = self.self_attention(
626
+ layernorm_output,
627
+ attention_mask,
628
+ rotary_pos_emb,
629
+ kv_cache=kv_cache,
630
+ use_cache=use_cache
631
+ )
632
+
633
+ # Residual connection.
634
+ if self.apply_residual_connection_post_layernorm:
635
+ residual = layernorm_output
636
+ else:
637
+ residual = hidden_states
638
+
639
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
640
+ layernorm_input = residual + layernorm_input
641
+
642
+ # Layer norm post the self attention.
643
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
644
+
645
+ # MLP.
646
+ mlp_output = self.mlp(layernorm_output)
647
+
648
+ # Second residual connection.
649
+ if self.apply_residual_connection_post_layernorm:
650
+ residual = layernorm_output
651
+ else:
652
+ residual = layernorm_input
653
+
654
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
655
+ output = residual + output
656
+
657
+ return output, kv_cache
658
+
659
+
660
+ class GLMTransformer(torch.nn.Module):
661
+ """Transformer class."""
662
+
663
+ def __init__(self, config: ChatGLMConfig, device=None):
664
+ super(GLMTransformer, self).__init__()
665
+
666
+ self.fp32_residual_connection = config.fp32_residual_connection
667
+ self.post_layer_norm = config.post_layer_norm
668
+
669
+ # Number of layers.
670
+ self.num_layers = config.num_layers
671
+
672
+ # Transformer layers.
673
+ def build_layer(layer_number):
674
+ return GLMBlock(config, layer_number, device=device)
675
+
676
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
677
+
678
+ if self.post_layer_norm:
679
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
680
+ # Final layer norm before output.
681
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
682
+ dtype=config.torch_dtype)
683
+
684
+ self.gradient_checkpointing = False
685
+
686
+ def _get_layer(self, layer_number):
687
+ return self.layers[layer_number]
688
+
689
+ def forward(
690
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
691
+ use_cache: Optional[bool] = True,
692
+ output_hidden_states: Optional[bool] = False,
693
+ ):
694
+ if not kv_caches:
695
+ kv_caches = [None for _ in range(self.num_layers)]
696
+ presents = () if use_cache else None
697
+ if self.gradient_checkpointing and self.training:
698
+ if use_cache:
699
+ logger.warning_once(
700
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
701
+ )
702
+ use_cache = False
703
+
704
+ all_self_attentions = None
705
+ all_hidden_states = () if output_hidden_states else None
706
+ for index in range(self.num_layers):
707
+ if output_hidden_states:
708
+ all_hidden_states = all_hidden_states + (hidden_states,)
709
+
710
+ layer = self._get_layer(index)
711
+ if self.gradient_checkpointing and self.training:
712
+ layer_ret = torch.utils.checkpoint.checkpoint(
713
+ layer,
714
+ hidden_states,
715
+ attention_mask,
716
+ rotary_pos_emb,
717
+ kv_caches[index],
718
+ use_cache,
719
+ use_reentrant=False
720
+ )
721
+ else:
722
+ layer_ret = layer(
723
+ hidden_states,
724
+ attention_mask,
725
+ rotary_pos_emb,
726
+ kv_cache=kv_caches[index],
727
+ use_cache=use_cache
728
+ )
729
+ hidden_states, kv_cache = layer_ret
730
+ if use_cache:
731
+ # token by token decoding, use tuple format
732
+ if kv_caches[0] is not None:
733
+ presents = presents + (kv_cache,)
734
+ # prefilling in decoding, use tensor format to save cuda memory
735
+ else:
736
+ if len(presents) == 0:
737
+ presents = kv_cache
738
+ else:
739
+ presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
740
+
741
+ if output_hidden_states:
742
+ all_hidden_states = all_hidden_states + (hidden_states,)
743
+
744
+ # Final layer norm.
745
+ if self.post_layer_norm:
746
+ hidden_states = self.final_layernorm(hidden_states)
747
+
748
+ return hidden_states, presents, all_hidden_states, all_self_attentions
749
+
750
+
751
+ class ChatGLMPreTrainedModel(PreTrainedModel):
752
+ """
753
+ An abstract class to handle weights initialization and
754
+ a simple interface for downloading and loading pretrained models.
755
+ """
756
+
757
+ is_parallelizable = False
758
+ supports_gradient_checkpointing = True
759
+ config_class = ChatGLMConfig
760
+ base_model_prefix = "transformer"
761
+ _no_split_modules = ["GLMBlock"]
762
+ _supports_flash_attn_2 = True
763
+ _supports_sdpa = True
764
+
765
+ def _init_weights(self, module: nn.Module):
766
+ """Initialize the weights."""
767
+ return
768
+
769
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
770
+ if self.config._attn_implementation == "flash_attention_2":
771
+ if padding_mask is not None and not padding_mask.all():
772
+ return padding_mask
773
+ return None
774
+ batch_size, seq_length = input_ids.shape
775
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
776
+ full_attention_mask.tril_()
777
+ past_length = 0
778
+ if past_key_values:
779
+ past_length = past_key_values[0][0].shape[2]
780
+ if past_length:
781
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
782
+ device=input_ids.device), full_attention_mask), dim=-1)
783
+ if padding_mask is not None:
784
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
785
+ if not past_length and padding_mask is not None:
786
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
787
+ full_attention_mask = (full_attention_mask < 0.5).bool()
788
+ full_attention_mask.unsqueeze_(1)
789
+ return full_attention_mask
790
+
791
+ def get_position_ids(self, input_ids, device):
792
+ batch_size, seq_length = input_ids.shape
793
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
794
+ return position_ids
795
+
796
+ class Embedding(torch.nn.Module):
797
+ """Language model embeddings."""
798
+
799
+ def __init__(self, config: ChatGLMConfig, device=None):
800
+ super(Embedding, self).__init__()
801
+
802
+ self.hidden_size = config.hidden_size
803
+ # Word embeddings (parallel).
804
+ self.word_embeddings = nn.Embedding(
805
+ config.padded_vocab_size,
806
+ self.hidden_size,
807
+ dtype=config.torch_dtype,
808
+ device=device
809
+ )
810
+ self.fp32_residual_connection = config.fp32_residual_connection
811
+
812
+ def forward(self, input_ids):
813
+ # Embeddings.
814
+ words_embeddings = self.word_embeddings(input_ids)
815
+ embeddings = words_embeddings
816
+ # If the input flag for fp32 residual connection is set, convert for float.
817
+ if self.fp32_residual_connection:
818
+ embeddings = embeddings.float()
819
+ return embeddings
820
+
821
+
822
+ class ChatGLMModel(ChatGLMPreTrainedModel):
823
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
824
+ super().__init__(config)
825
+ if empty_init:
826
+ init_method = skip_init
827
+ else:
828
+ init_method = default_init
829
+ init_kwargs = {}
830
+ if device is not None:
831
+ init_kwargs["device"] = device
832
+ self.embedding = init_method(Embedding, config, **init_kwargs)
833
+ self.num_layers = config.num_layers
834
+ self.multi_query_group_num = config.multi_query_group_num
835
+ self.kv_channels = config.kv_channels
836
+
837
+ # Rotary positional embeddings
838
+ self.seq_length = config.seq_length
839
+ rotary_dim = (
840
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
841
+ )
842
+
843
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
844
+ original_impl=config.original_rope,
845
+ device=device, dtype=config.torch_dtype)
846
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
847
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
848
+ dtype=config.torch_dtype, **init_kwargs)
849
+
850
+ def get_input_embeddings(self):
851
+ return self.embedding.word_embeddings
852
+
853
+ def set_input_embeddings(self, value):
854
+ self.embedding.word_embeddings = value
855
+
856
+ def forward(
857
+ self,
858
+ input_ids,
859
+ position_ids: Optional[torch.Tensor] = None,
860
+ attention_mask: Optional[torch.BoolTensor] = None,
861
+ full_attention_mask: Optional[torch.BoolTensor] = None,
862
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
863
+ inputs_embeds: Optional[torch.Tensor] = None,
864
+ use_cache: Optional[bool] = None,
865
+ output_attentions: Optional[bool] = None,
866
+ output_hidden_states: Optional[bool] = None,
867
+ return_dict: Optional[bool] = None,
868
+ ):
869
+ output_hidden_states = (
870
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
871
+ )
872
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
873
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
874
+
875
+ batch_size, seq_length = input_ids.shape
876
+
877
+ if inputs_embeds is None:
878
+ inputs_embeds = self.embedding(input_ids)
879
+
880
+ if full_attention_mask is None:
881
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
882
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
883
+
884
+ # Rotary positional embeddings
885
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
886
+ if position_ids is not None:
887
+ rotary_pos_emb = rotary_pos_emb[position_ids]
888
+ else:
889
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
890
+
891
+ # Run encoder.
892
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
893
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
894
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
895
+ )
896
+ if presents is not None and type(presents) is torch.Tensor:
897
+ presents = presents.split(1, dim=0)
898
+ presents = list(presents)
899
+ presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
900
+ presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
901
+ presents = tuple(presents)
902
+
903
+ if not return_dict:
904
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
905
+
906
+ return BaseModelOutputWithPast(
907
+ last_hidden_state=hidden_states,
908
+ past_key_values=presents,
909
+ hidden_states=all_hidden_states,
910
+ attentions=all_self_attentions,
911
+ )
912
+
913
+
914
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
915
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
916
+ super().__init__(config)
917
+
918
+ self.max_sequence_length = config.max_length
919
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
920
+ self.config = config
921
+
922
+ def _update_model_kwargs_for_generation(
923
+ self,
924
+ outputs: ModelOutput,
925
+ model_kwargs: Dict[str, Any],
926
+ is_encoder_decoder: bool = False,
927
+ ) -> Dict[str, Any]:
928
+ # update past_key_values
929
+ cache_name, cache = self._extract_past_from_model_output(outputs)
930
+ model_kwargs[cache_name] = cache
931
+
932
+ # update attention mask
933
+ if "attention_mask" in model_kwargs:
934
+ attention_mask = model_kwargs["attention_mask"]
935
+ model_kwargs["attention_mask"] = torch.cat(
936
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
937
+ )
938
+
939
+ # update position ids
940
+ if "position_ids" in model_kwargs:
941
+ position_ids = model_kwargs["position_ids"]
942
+ new_position_id = position_ids[..., -1:].clone()
943
+ new_position_id += 1
944
+ model_kwargs["position_ids"] = torch.cat(
945
+ [position_ids, new_position_id], dim=-1
946
+ )
947
+
948
+ model_kwargs["is_first_forward"] = False
949
+ return model_kwargs
950
+
951
+ def prepare_inputs_for_generation(
952
+ self,
953
+ input_ids: torch.LongTensor,
954
+ past_key_values: Optional[torch.Tensor] = None,
955
+ attention_mask: Optional[torch.Tensor] = None,
956
+ position_ids: Optional[torch.Tensor] = None,
957
+ use_cache: Optional[bool] = None,
958
+ is_first_forward: bool = True,
959
+ **kwargs
960
+ ) -> dict:
961
+ # only last token for input_ids if past is not None
962
+ if position_ids is None:
963
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
964
+ if not is_first_forward:
965
+ if past_key_values is not None:
966
+ position_ids = position_ids[..., -1:]
967
+ input_ids = input_ids[:, -1:]
968
+ return {
969
+ "input_ids": input_ids,
970
+ "past_key_values": past_key_values,
971
+ "position_ids": position_ids,
972
+ "attention_mask": attention_mask,
973
+ "return_last_logit": True,
974
+ "use_cache": use_cache
975
+ }
976
+
977
+ def forward(
978
+ self,
979
+ input_ids: Optional[torch.Tensor] = None,
980
+ position_ids: Optional[torch.Tensor] = None,
981
+ attention_mask: Optional[torch.Tensor] = None,
982
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
983
+ inputs_embeds: Optional[torch.Tensor] = None,
984
+ labels: Optional[torch.Tensor] = None,
985
+ use_cache: Optional[bool] = None,
986
+ output_attentions: Optional[bool] = None,
987
+ output_hidden_states: Optional[bool] = None,
988
+ return_dict: Optional[bool] = None,
989
+ return_last_logit: Optional[bool] = False,
990
+ ):
991
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
992
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
993
+
994
+ transformer_outputs = self.transformer(
995
+ input_ids=input_ids,
996
+ position_ids=position_ids,
997
+ attention_mask=attention_mask,
998
+ past_key_values=past_key_values,
999
+ inputs_embeds=inputs_embeds,
1000
+ use_cache=use_cache,
1001
+ output_hidden_states=output_hidden_states,
1002
+ return_dict=return_dict,
1003
+ )
1004
+
1005
+ hidden_states = transformer_outputs[0]
1006
+ if return_last_logit:
1007
+ hidden_states = hidden_states[:, -1:]
1008
+ lm_logits = self.transformer.output_layer(hidden_states)
1009
+
1010
+ loss = None
1011
+ if labels is not None:
1012
+ lm_logits = lm_logits.to(torch.float32)
1013
+
1014
+ # Shift so that tokens < n predict n
1015
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1016
+ shift_labels = labels[..., 1:].contiguous()
1017
+ # Flatten the tokens
1018
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
1019
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1020
+
1021
+ lm_logits = lm_logits.to(hidden_states.dtype)
1022
+ loss = loss.to(hidden_states.dtype)
1023
+
1024
+ if not return_dict:
1025
+ output = (lm_logits,) + transformer_outputs[1:]
1026
+ return ((loss,) + output) if loss is not None else output
1027
+
1028
+ return CausalLMOutputWithPast(
1029
+ loss=loss,
1030
+ logits=lm_logits,
1031
+ past_key_values=transformer_outputs.past_key_values,
1032
+ hidden_states=transformer_outputs.hidden_states,
1033
+ attentions=transformer_outputs.attentions,
1034
+ )
1035
+
1036
+ @staticmethod
1037
+ def _reorder_cache(
1038
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1039
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1040
+ """
1041
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1042
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1043
+ beam_idx at every generation step.
1044
+
1045
+ Output shares the same memory storage as `past`.
1046
+ """
1047
+ return tuple(
1048
+ (
1049
+ layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
1050
+ layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
1051
+ )
1052
+ for layer_past in past
1053
+ )
1054
+
1055
+
1056
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1057
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1058
+ super().__init__(config)
1059
+
1060
+ self.num_labels = config.num_labels
1061
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1062
+
1063
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=config.torch_dtype)
1064
+ if config.classifier_dropout is not None:
1065
+ self.dropout = nn.Dropout(config.classifier_dropout)
1066
+ else:
1067
+ self.dropout = None
1068
+ self.config = config
1069
+
1070
+ def forward(
1071
+ self,
1072
+ input_ids: Optional[torch.LongTensor] = None,
1073
+ position_ids: Optional[torch.LongTensor] = None,
1074
+ attention_mask: Optional[torch.Tensor] = None,
1075
+ full_attention_mask: Optional[torch.Tensor] = None,
1076
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1077
+ inputs_embeds: Optional[torch.LongTensor] = None,
1078
+ labels: Optional[torch.LongTensor] = None,
1079
+ use_cache: Optional[bool] = None,
1080
+ output_attentions: Optional[bool] = None,
1081
+ output_hidden_states: Optional[bool] = None,
1082
+ return_dict: Optional[bool] = None,
1083
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1084
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1085
+
1086
+ transformer_outputs = self.transformer(
1087
+ input_ids=input_ids,
1088
+ position_ids=position_ids,
1089
+ attention_mask=attention_mask,
1090
+ full_attention_mask=full_attention_mask,
1091
+ past_key_values=past_key_values,
1092
+ inputs_embeds=inputs_embeds,
1093
+ use_cache=use_cache,
1094
+ output_attentions=output_attentions,
1095
+ output_hidden_states=output_hidden_states,
1096
+ return_dict=return_dict,
1097
+ )
1098
+
1099
+ hidden_states = transformer_outputs[0]
1100
+ pooled_hidden_states = hidden_states[:, -1]
1101
+ if self.dropout is not None:
1102
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1103
+ logits = self.classifier_head(pooled_hidden_states)
1104
+
1105
+ loss = None
1106
+ if labels is not None:
1107
+ if self.config.problem_type is None:
1108
+ if self.num_labels == 1:
1109
+ self.config.problem_type = "regression"
1110
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1111
+ self.config.problem_type = "single_label_classification"
1112
+ else:
1113
+ self.config.problem_type = "multi_label_classification"
1114
+
1115
+ if self.config.problem_type == "regression":
1116
+ loss_fct = MSELoss()
1117
+ if self.num_labels == 1:
1118
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1119
+ else:
1120
+ loss = loss_fct(logits.float(), labels)
1121
+ elif self.config.problem_type == "single_label_classification":
1122
+ loss_fct = CrossEntropyLoss()
1123
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1124
+ elif self.config.problem_type == "multi_label_classification":
1125
+ loss_fct = BCEWithLogitsLoss()
1126
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1127
+
1128
+ if not return_dict:
1129
+ output = (logits,) + transformer_outputs[1:]
1130
+ return ((loss,) + output) if loss is not None else output
1131
+
1132
+ return SequenceClassifierOutputWithPast(
1133
+ loss=loss,
1134
+ logits=logits,
1135
+ past_key_values=transformer_outputs.past_key_values,
1136
+ hidden_states=transformer_outputs.hidden_states,
1137
+ attentions=transformer_outputs.attentions,
1138
+ )
tokenization_chatglm.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import regex as re
2
+ import base64
3
+ import os
4
+ import json
5
+ import tiktoken
6
+ from typing import List, Optional, Union, Dict, Any
7
+ from transformers import PreTrainedTokenizer
8
+ from transformers.utils import logging, PaddingStrategy, TensorType
9
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
10
+
11
+
12
+ class ChatGLM4Tokenizer(PreTrainedTokenizer):
13
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
14
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
15
+
16
+ def __init__(
17
+ self,
18
+ vocab_file,
19
+ padding_side="left",
20
+ clean_up_tokenization_spaces=False,
21
+ encode_special_tokens=False,
22
+ **kwargs
23
+ ):
24
+ self.name = "GLM4Tokenizer"
25
+ self.vocab_file = vocab_file
26
+ pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
27
+ self.pat_str = re.compile(pat_str)
28
+ self.encode_special_tokens = encode_special_tokens
29
+
30
+ mergeable_ranks = {}
31
+ with open(vocab_file) as f:
32
+ for line in f:
33
+ token, rank = line.strip().split()
34
+ rank = int(rank)
35
+ token = base64.b64decode(token)
36
+ mergeable_ranks[token] = rank
37
+
38
+ self.mergeable_ranks = mergeable_ranks
39
+
40
+ self.tokenizer = tiktoken.Encoding(
41
+ name="my_tokenizer",
42
+ pat_str=pat_str,
43
+ mergeable_ranks=mergeable_ranks,
44
+ special_tokens={}
45
+ )
46
+ self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
47
+ self.n_words = len(self.decoder)
48
+
49
+ super().__init__(
50
+ padding_side=padding_side,
51
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
52
+ **kwargs
53
+ )
54
+
55
+ @property
56
+ def vocab_size(self):
57
+ return self.n_words
58
+
59
+ def get_vocab(self):
60
+ """ Returns vocab as a dict """
61
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
62
+ vocab.update(self.added_tokens_encoder)
63
+ return vocab
64
+
65
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
66
+ """
67
+ Converts a sequence of tokens in a single string.
68
+ """
69
+ text = ""
70
+ temp = b""
71
+ for t in tokens:
72
+ if isinstance(t, int):
73
+ t = chr(t)
74
+ if isinstance(t, str):
75
+ if temp:
76
+ text += temp.decode("utf-8", errors="replace")
77
+ elif isinstance(t, bytes):
78
+ temp += t
79
+ else:
80
+ raise TypeError("token should only be of type int, bytes or str")
81
+ if temp:
82
+ text += temp.decode("utf-8", errors="replace")
83
+ return text
84
+
85
+ def _tokenize(self, text, **kwargs):
86
+ tokens = []
87
+ ids = self.tokenizer.encode(text)
88
+ for t in ids:
89
+ tokens.append(self.decoder[t])
90
+ return tokens
91
+
92
+ def _convert_token_to_id(self, token):
93
+ """ Converts a token (str) in an id using the vocab. """
94
+ return self.mergeable_ranks[token]
95
+
96
+ def _convert_id_to_token(self, index):
97
+ """Converts an index (integer) in a token (str) using the vocab."""
98
+ return self.decoder.get(index, "")
99
+
100
+ def save_vocabulary(self, save_directory, filename_prefix=None):
101
+ """
102
+ Save the vocabulary and special tokens file to a directory.
103
+
104
+ Args:
105
+ save_directory (`str`):
106
+ The directory in which to save the vocabulary.
107
+ filename_prefix (`str`, *optional*):
108
+ An optional prefix to add to the named of the saved files.
109
+
110
+ Returns:
111
+ `Tuple(str)`: Paths to the files saved.
112
+ """
113
+ if os.path.isdir(save_directory):
114
+ vocab_file = os.path.join(
115
+ save_directory, self.vocab_files_names["vocab_file"]
116
+ )
117
+ else:
118
+ vocab_file = save_directory
119
+
120
+ with open(self.vocab_file, 'rb') as fin:
121
+ proto_str = fin.read()
122
+
123
+ with open(vocab_file, "wb") as writer:
124
+ writer.write(proto_str)
125
+
126
+ return (vocab_file,)
127
+
128
+ def get_prefix_tokens(self):
129
+ prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
130
+ return prefix_tokens
131
+
132
+ def build_single_message(self, role, metadata, message, tokenize=True):
133
+ assert role in ["system", "user", "assistant", "observation"], role
134
+ if tokenize:
135
+ role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
136
+ disallowed_special=())
137
+ message_tokens = self.tokenizer.encode(message, disallowed_special=())
138
+ tokens = role_tokens + message_tokens
139
+ return tokens
140
+ else:
141
+ return str(f"<|{role}|>{metadata}\n{message}")
142
+
143
+ # Use Jinja Template in tokenizer_config.json
144
+ # def apply_chat_template(
145
+ # self,
146
+ # conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"],
147
+ # add_generation_prompt: bool = False,
148
+ # tokenize: bool = True,
149
+ # padding: bool = False,
150
+ # truncation: bool = False,
151
+ # max_length: Optional[int] = None,
152
+ # return_tensors: Optional[Union[str, TensorType]] = None,
153
+ # return_dict: bool = False,
154
+ # tokenizer_kwargs: Optional[Dict[str, Any]] = None,
155
+ # add_special_tokens: bool = True,
156
+ # **kwargs,
157
+ # ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
158
+ #
159
+ # if return_dict and not tokenize:
160
+ # raise ValueError(
161
+ # "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
162
+ # "of tokenizer outputs to return."
163
+ # )
164
+ #
165
+ # def handle_single_conversation(conversation):
166
+ # input_ids = self.get_prefix_tokens() if add_special_tokens else []
167
+ # input_message = "[gMASK]<sop>" if add_special_tokens else ""
168
+ # for item in conversation:
169
+ # if item.get("tools"):
170
+ # tools = item["tools"]
171
+ # content = "你是一个名为 GhatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。"
172
+ # content += "\n\n# 可用工具"
173
+ # for tool in tools:
174
+ # if tool["type"] == "function":
175
+ # function = tool["function"]
176
+ # content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}"
177
+ # content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。"
178
+ # elif tool["type"] == "python":
179
+ # content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。"
180
+ # elif tool["type"] == "simple_browser":
181
+ # content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。"
182
+ # elif tool["type"] == "cogview":
183
+ # content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。"
184
+ # else:
185
+ # raise NotImplementedError(f"Unknown tool type {tool['type']}")
186
+ # input = self.build_single_message("system", "", content, tokenize=tokenize)
187
+ # if tokenize:
188
+ # input_ids.extend(input)
189
+ # else:
190
+ # input_message += input
191
+ # if item["content"]:
192
+ # input = self.build_single_message(
193
+ # item["role"],
194
+ # item.get("metadata", ""),
195
+ # item["content"],
196
+ # tokenize=tokenize
197
+ # )
198
+ # if tokenize:
199
+ # input_ids.extend(input)
200
+ # else:
201
+ # input_message += input
202
+ # if add_generation_prompt:
203
+ # if tokenize:
204
+ # input_ids.extend([self.convert_tokens_to_ids("<|assistant|>")])
205
+ # else:
206
+ # input_message += "<|assistant|>"
207
+ # return input_ids if tokenize else input_message
208
+ #
209
+ # # Main logic to handle different conversation formats
210
+ # if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation):
211
+ # result = handle_single_conversation(conversation)
212
+ # elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation):
213
+ # result = [handle_single_conversation(c) for c in conversation]
214
+ # elif hasattr(conversation, "messages"):
215
+ # result = handle_single_conversation(conversation.messages)
216
+ # else:
217
+ # raise ValueError("Invalid conversation format")
218
+ #
219
+ # if tokenize:
220
+ # output = self.batch_encode_plus(
221
+ # [result] if isinstance(result[0], int) else result,
222
+ # padding=padding,
223
+ # truncation=truncation,
224
+ # max_length=max_length,
225
+ # return_tensors=return_tensors,
226
+ # is_split_into_words=True,
227
+ # add_special_tokens=False
228
+ # )
229
+ # if return_dict:
230
+ # return output
231
+ # else:
232
+ # return output["input_ids"]
233
+ # else:
234
+ # return result
235
+
236
+ def build_inputs_with_special_tokens(
237
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
238
+ ) -> List[int]:
239
+ """
240
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
241
+ adding special tokens. A BERT sequence has the following format:
242
+
243
+ - single sequence: `[CLS] X [SEP]`
244
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
245
+
246
+ Args:
247
+ token_ids_0 (`List[int]`):
248
+ List of IDs to which the special tokens will be added.
249
+ token_ids_1 (`List[int]`, *optional*):
250
+ Optional second list of IDs for sequence pairs.
251
+
252
+ Returns:
253
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
254
+ """
255
+ prefix_tokens = self.get_prefix_tokens()
256
+ token_ids_0 = prefix_tokens + token_ids_0
257
+ if token_ids_1 is not None:
258
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
259
+ return token_ids_0
260
+
261
+ def _pad(
262
+ self,
263
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
264
+ max_length: Optional[int] = None,
265
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
266
+ pad_to_multiple_of: Optional[int] = None,
267
+ return_attention_mask: Optional[bool] = None,
268
+ ) -> dict:
269
+ """
270
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
271
+
272
+ Args:
273
+ encoded_inputs:
274
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
275
+ max_length: maximum length of the returned list and optionally padding length (see below).
276
+ Will truncate by taking into account the special tokens.
277
+ padding_strategy: PaddingStrategy to use for padding.
278
+
279
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
280
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
281
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
282
+ The tokenizer padding sides are defined in self.padding_side:
283
+
284
+ - 'left': pads on the left of the sequences
285
+ - 'right': pads on the right of the sequences
286
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
287
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
288
+ `>= 7.5` (Volta).
289
+ return_attention_mask:
290
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
291
+ """
292
+ # Load from model defaults
293
+ assert self.padding_side == "left"
294
+
295
+ required_input = encoded_inputs[self.model_input_names[0]]
296
+ seq_length = len(required_input)
297
+
298
+ if padding_strategy == PaddingStrategy.LONGEST:
299
+ max_length = len(required_input)
300
+
301
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
302
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
303
+
304
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
305
+
306
+ # Initialize attention mask if not present.
307
+ if "attention_mask" not in encoded_inputs:
308
+ encoded_inputs["attention_mask"] = [1] * seq_length
309
+
310
+ if "position_ids" not in encoded_inputs:
311
+ encoded_inputs["position_ids"] = list(range(seq_length))
312
+
313
+ if needs_to_be_padded:
314
+ difference = max_length - len(required_input)
315
+
316
+ if "attention_mask" in encoded_inputs:
317
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
318
+ if "position_ids" in encoded_inputs:
319
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
320
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
321
+
322
+ return encoded_inputs
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
3
+ size 2623634
tokenizer_config.json ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": [
4
+ "tokenization_chatglm.ChatGLM4Tokenizer",
5
+ null
6
+ ]
7
+ },
8
+ "added_tokens_decoder": {
9
+ "151329": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false,
15
+ "special": true
16
+ },
17
+ "151330": {
18
+ "content": "[MASK]",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false,
23
+ "special": true
24
+ },
25
+ "151331": {
26
+ "content": "[gMASK]",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false,
31
+ "special": true
32
+ },
33
+ "151332": {
34
+ "content": "[sMASK]",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false,
39
+ "special": true
40
+ },
41
+ "151333": {
42
+ "content": "<sop>",
43
+ "lstrip": false,
44
+ "normalized": false,
45
+ "rstrip": false,
46
+ "single_word": false,
47
+ "special": true
48
+ },
49
+ "151334": {
50
+ "content": "<eop>",
51
+ "lstrip": false,
52
+ "normalized": false,
53
+ "rstrip": false,
54
+ "single_word": false,
55
+ "special": true
56
+ },
57
+ "151335": {
58
+ "content": "<|system|>",
59
+ "lstrip": false,
60
+ "normalized": false,
61
+ "rstrip": false,
62
+ "single_word": false,
63
+ "special": true
64
+ },
65
+ "151336": {
66
+ "content": "<|user|>",
67
+ "lstrip": false,
68
+ "normalized": false,
69
+ "rstrip": false,
70
+ "single_word": false,
71
+ "special": true
72
+ },
73
+ "151337": {
74
+ "content": "<|assistant|>",
75
+ "lstrip": false,
76
+ "normalized": false,
77
+ "rstrip": false,
78
+ "single_word": false,
79
+ "special": true
80
+ },
81
+ "151338": {
82
+ "content": "<|observation|>",
83
+ "lstrip": false,
84
+ "normalized": false,
85
+ "rstrip": false,
86
+ "single_word": false,
87
+ "special": true
88
+ },
89
+ "151339": {
90
+ "content": "<|begin_of_image|>",
91
+ "lstrip": false,
92
+ "normalized": false,
93
+ "rstrip": false,
94
+ "single_word": false,
95
+ "special": true
96
+ },
97
+ "151340": {
98
+ "content": "<|end_of_image|>",
99
+ "lstrip": false,
100
+ "normalized": false,
101
+ "rstrip": false,
102
+ "single_word": false,
103
+ "special": true
104
+ },
105
+ "151341": {
106
+ "content": "<|begin_of_video|>",
107
+ "lstrip": false,
108
+ "normalized": false,
109
+ "rstrip": false,
110
+ "single_word": false,
111
+ "special": true
112
+ },
113
+ "151342": {
114
+ "content": "<|end_of_video|>",
115
+ "lstrip": false,
116
+ "normalized": false,
117
+ "rstrip": false,
118
+ "single_word": false,
119
+ "special": true
120
+ }
121
+ },
122
+ "additional_special_tokens": ["<|endoftext|>", "[MASK]", "[gMASK]", "[sMASK]", "<sop>", "<eop>", "<|system|>",
123
+ "<|user|>", "<|assistant|>", "<|observation|>", "<|begin_of_image|>", "<|end_of_image|>",
124
+ "<|begin_of_video|>", "<|end_of_video|>"],
125
+ "clean_up_tokenization_spaces": false,
126
+ "chat_template": "[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>\n你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。\n\n# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}{% if tool['type'] == 'function' %}\n\n## {{ tool['function']['name'] }}\n\n{{ tool['function'] | tojson(indent=4) }}\n在调用上述函数时,请使用 Json 格式表示调用的参数。{% elif tool['type'] == 'python' %}\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。{% elif tool['type'] == 'simple_browser' %}\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL���也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。{% elif tool['type'] == 'cogview' %}\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。{% endif %}{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}\n{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
127
+ "do_lower_case": false,
128
+ "eos_token": "<|endoftext|>",
129
+ "pad_token": "<|endoftext|>",
130
+ "model_max_length": 128000,
131
+ "padding_side": "left",
132
+ "remove_space": false,
133
+ "tokenizer_class": "ChatGLM4Tokenizer"
134
+ }