bvaibhav83 commited on
Commit
4300ba3
1 Parent(s): dc69a56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -1
README.md CHANGED
@@ -2,4 +2,28 @@
2
  tags:
3
  - vision
4
  - image-segmentation
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - vision
4
  - image-segmentation
5
+ datasets:
6
+ - segments/sidewalk-semantic
7
+ widget:
8
+ - src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg
9
+ example_title: Brugge
10
+ ---
11
+ # SegFormer (b0-sized) model fine-tuned on Segments.ai sidewalk-semantic.
12
+ SegFormer model fine-tuned on [Segments.ai](https://segments.ai) [`sidewalk-semantic`](https://huggingface.co/datasets/segments/sidewalk-semantic). It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer).
13
+ ## Model description
14
+ SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset.
15
+ ### How to use
16
+ Here is how to use this model to classify an image of the sidewalk dataset:
17
+ ```python
18
+ from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
19
+ from PIL import Image
20
+ import requests
21
+ feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
22
+ model = SegformerForSemanticSegmentation.from_pretrained("segments-tobias/segformer-b0-finetuned-segments-sidewalk")
23
+ url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
24
+ image = Image.open(requests.get(url, stream=True).raw)
25
+ inputs = feature_extractor(images=image, return_tensors="pt")
26
+ outputs = model(**inputs)
27
+ logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
28
+
29
+ ```